Skip to main content

Advertisement

Log in

Impact of minimal tumor burden on antibody response to vaccination

  • Original article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Four randomized phase III trials conducted recently in melanoma patients in the adjuvant setting have been based in part on the correlation between antibody responses in immunized patients and improved survival. Each of these randomized trials demonstrated no clinical benefit, although again there was a significant correlation between antibody response after vaccination and disease free and overall survival. To better understand this paradox, we established a surgical adjuvant model targeting GD2 ganglioside on EL4 lymphoma cells injected into the foot pad followed by amputation at variable intervals. Our findings are (1) comparable strong therapeutic benefit resulted from treatment of mice after amputation with a GD2-KLH conjugate vaccine or with anti-GD2 monoclonal antibody 3F8. (2) The strongest correlation was between antibody induction in response to vaccination and prolonged survival. (3) Antibody titers in response to vaccination in tumor challenged mice as compared to unchallenged mice were far lower despite the absence of detectable recurrences at the time. (4) The half life of administered 3F8 monoclonal antibody (but not control antibody) in challenged mice administered was significantly shorter than the half life of 3F8 antibody in unchallenged controls. The correlation between vaccine-induced antibody titers and prolonged survival may reflect, at least in part, increased tumor burden in antibody-negative mice. Absorption of vaccine-induced antibodies by increased, although not detected tumor burden may also explain the correlation between vaccine-induced antibody titers and survival in the adjuvant clinical trials described above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

mAb:

Monoclonal antibody

ADCC:

Antibody-dependent cell-mediated cytotoxicity

CDC:

Complement-dependent cytotoxicity

ELISA:

Enzyme-linked immunosorbent assay

FCS:

Fetal calf serum

NK cells:

Natural killer cells

IV:

Intravenous

KLH:

Keyhole limpet hemocyanin

PBS:

Phosphate buffered saline

sTn:

Sialyl Tn

References

  1. Svennerholm L (1963) Chromatographic separation of human brain gangliosides. J Neurochem 10:613–623

    Article  PubMed  CAS  Google Scholar 

  2. Eisenthal A, Lafreniere R, Lefor AT, Rosenberg SA (1987) Effect of anti-B16 melanoma monoclonal antibody on established murine B16 melanoma liver metastases. Cancer Res 47:2771–2776

    PubMed  CAS  Google Scholar 

  3. Hara I, Takechi Y, Houghton AN (1995) Implicating a role for immune recognition of self in tumor rejection: passive immunization against the brown locus protein. J Exp Med 182:1609–1614

    Article  PubMed  CAS  Google Scholar 

  4. Law LW, Vieira WD, Hearing VJ, Gersten DM (1994) Further studies of the therapeutic effects of murine melanoma-specific monoclonal antibodies. Biochim Biophys Acta 1226:105–109

    PubMed  CAS  Google Scholar 

  5. Mujoo K, Kipps TJ, Yang HM et al (1989) Functional properties and effect on growth suppression of human neuroblastoma tumors by isotype switch variants of monoclonal antiganglioside GD2 antibody 14.18. Cancer Res 49:2857–2861

    PubMed  CAS  Google Scholar 

  6. Nagy E, Berczi I, Sehon AH (1991) Growth inhibition of murine mammary carcinoma by monoclonal IgE antibodies specific for the mammary tumor virus. Cancer Immunol Immunother 34:63–69

    Article  PubMed  CAS  Google Scholar 

  7. Nasi ML, Meyers M, Livingston PO, Houghton AN, Chapman PB (1997) Anti-melanoma effects of R24, a monoclonal antibody against GD3 ganglioside. Melanoma Res 7(Suppl 2):S155–S162

    PubMed  CAS  Google Scholar 

  8. Zhang H, Zhang S, Cheung NK, Ragupathi G, Livingston PO (1998) Antibodies against GD2 ganglioside can eradicate syngeneic cancer micrometastases. Cancer Res 58:2844–2849

    PubMed  CAS  Google Scholar 

  9. Romond EH, Perez EA, Bryant J et al (2005) Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353:1673–1684

    Article  PubMed  CAS  Google Scholar 

  10. Helling F, Shang A, Calves M et al (1994) GD3 vaccines for melanoma: superior immunogenicity of keyhole limpet hemocyanin conjugate vaccines. Cancer Res 54:197–203

    PubMed  CAS  Google Scholar 

  11. Jones PC, Sze LL, Liu PY, Morton DL, Irie RF (1981) Prolonged survival for melanoma patients with elevated IgM antibody to oncofetal antigen. J Natl Cancer Inst 66:249–254

    PubMed  CAS  Google Scholar 

  12. MacLean GD, Reddish MA, Koganty RR, Longenecker BM (1996) Antibodies against mucin-associated sialyl-Tn epitopes correlate with survival of metastatic adenocarcinoma patients undergoing active specific immunotherapy with synthetic STn vaccine. J Immunother Emphasis Tumor Immunol 19:59–68

    PubMed  CAS  Google Scholar 

  13. Miller K, Abeles G, Oratz R et al (1995) Improved survival of patients with melanoma with an antibody response to immunization to a polyvalent melanoma vaccine. Cancer 75:495–502

    Article  PubMed  CAS  Google Scholar 

  14. Mittelman A, Chen GZ, Wong GY, Liu C, Hirai S, Ferrone S (1995) Human high molecular weight-melanoma associated antigen mimicry by mouse anti-idiotypic monoclonal antibody MK2-23: modulation of the immunogenicity in patients with malignant melanoma. Clin Cancer Res 1:705–713

    PubMed  CAS  Google Scholar 

  15. Morton DL, Foshag LJ, Hoon DS et al (1992) Prolongation of survival in metastatic melanoma after active specific immunotherapy with a new polyvalent melanoma vaccine. Ann Surg 216:463–482

    Article  PubMed  CAS  Google Scholar 

  16. Riethmuller G, Schneider-Gadicke E, Schlimok G et al (1994) Randomised trial of monoclonal antibody for adjuvant therapy of resected Dukes’ C colorectal carcinoma. German Cancer Aid 17-1A Study Group. Lancet 343:1177–1183

    Article  PubMed  CAS  Google Scholar 

  17. Winter SF, Sekido Y, Minna JD et al (1993) Antibodies against autologous tumor cell proteins in patients with small-cell lung cancer: association with improved survival. J Natl Cancer Inst 85:2012–2018

    Article  PubMed  CAS  Google Scholar 

  18. Eggermont AM (2010) Randomized phase III trial comparing postoperative adjuvant ganglioside GM2-KLH/QS-21 vaccination versus observation in stage II (T3-T4N0M0) melanoma: Final results of study EORTC 18961. J Clin Oncol 28(Suppl 15):8505

    Google Scholar 

  19. Kirkwood JM, Manola J, Ibrahim J, Sondak V, Ernstoff MS, Rao U (2004) A pooled analysis of eastern cooperative oncology group and intergroup trials of adjuvant high-dose interferon for melanoma. Clin Cancer Res 10(5):1670–1677

    Google Scholar 

  20. Tarhini AA, Stuckert J, Lee S, Sander C, Kirkwood JM (2009) Prognostic significance of serum S100B protein in high-risk surgically resected melanoma patients participating in Intergroup Trial ECOG 1694. J Clin Oncol 27(1):38–44. doi:JCO.2008.17.1777

    Google Scholar 

  21. Terando AM, Faries MB, Morton DL (2007) Vaccine therapy for melanoma: current status and future directions. Vaccine 25(Suppl 2):B4–B16

    Article  PubMed  CAS  Google Scholar 

  22. Cheung NK, Saarinen UM, Neely JE, Landmeier B, Donovan D, Coccia PF (1985) Monoclonal antibodies to a glycolipid antigen on human neuroblastoma cells. Cancer Res 45:2642–2649

    PubMed  CAS  Google Scholar 

  23. Kushner BH, Kramer K, Cheung NK (2001) Phase II trial of the anti-G(D2) monoclonal antibody 3F8 and granulocyte-macrophage colony-stimulating factor for neuroblastoma. J Clin Oncol 19:4189–4194

    PubMed  CAS  Google Scholar 

  24. Zhang S, Cordon-Cardo C, Zhang HS et al (1997) Selection of tumor antigens as targets for immune attack using immunohistochemistry: I. Focus on gangliosides. Int J Cancer 73:42–49

    Article  PubMed  CAS  Google Scholar 

  25. Yu AL, Gilman AL, Ozkaynak MF et al (2009) A phase III randomized trial of the chimeric anti-GD2 antibody ch14.18 with GM-CSF and IL2 as immunotherapy following dose intensive chemotherapy following dose intensive chemotherapy for high-risk neuroblastoma: Childrens’ Oncology Group (COG) study ANBL0032. J Clin Oncol 27:15s

    Google Scholar 

  26. Bolesta E, Kowalczyk A, Wierzbicki A et al (2005) DNA vaccine expressing the mimotope of GD2 ganglioside induces protective GD2 cross-reactive antibody responses. Cancer Res 65:3410–3418

    PubMed  CAS  Google Scholar 

  27. Fest S, Huebener N, Weixler S et al (2006) Characterization of GD2 peptide mimotope DNA vaccines effective against spontaneous neuroblastoma metastases. Cancer Res 66:10567–10575

    Article  PubMed  CAS  Google Scholar 

  28. Kowalczyk A, Wierzbicki A, Gil M et al (2007) Induction of protective immune responses against NXS2 neuroblastoma challenge in mice by immunotherapy with GD2 mimotope vaccine and IL-15 and IL-21 gene delivery. Cancer Immunol Immunother 56:1443–1458

    Article  PubMed  CAS  Google Scholar 

  29. Kim SK, Ragupathi G, Musselli C, Choi SJ, Park YS, Livingston PO (1999) Comparison of the effect of different immunological adjuvants on the antibody and T-cell response to immunization with MUC1-KLH and GD3-KLH conjugate cancer vaccines. Vaccine 18:597–603

    Article  PubMed  CAS  Google Scholar 

  30. Kensil CR, Patel U, Lennick M, Marciani D (1991) Separation and characterization of saponins with adjuvant activity fro Quillaja saponaria molina cortex. J Immunol 146:431

    PubMed  CAS  Google Scholar 

  31. Imai M, Landen C, Ohta R, Cheung NK, Tomlinson S (2005) Complement-mediated mechanisms in anti-GD2 monoclonal antibody therapy of murine metastatic cancer. Cancer Res 65:10562–10568

    Article  PubMed  CAS  Google Scholar 

  32. Ragupathi G, Livingston PO, Hood C et al (2003) Consistent antibody response against ganglioside GD2 induced in patients with melanoma by a GD2 lactone-keyhole limpet hemocyanin conjugate vaccine plus immunological adjuvant QS-21. Clin Cancer Res 9:5214–5220

    PubMed  CAS  Google Scholar 

  33. Gorer PA, Kaliss N (1959) The effect of isoantibodies in vivo on three different transplantable neoplasms in mice. Cancer Res 19:824–830

    PubMed  CAS  Google Scholar 

  34. Zhao XJ, Cheung NK (1995) GD2 oligosaccharide: target for cytotoxic T lymphocytes. J Exp Med 182:67–74

    Article  PubMed  CAS  Google Scholar 

  35. Kim SK, Ragupathi G, Cappello S, Kagan E, Livingston PO (2000) Effect of immunological adjuvant combinations on the antibody and T-cell response to vaccination with MUC1-KLH and GD3-KLH conjugates. Vaccine 19:530–537

    Article  PubMed  CAS  Google Scholar 

  36. Cahan LD, Irie RF, Singh R, Cassidenti A, Paulson JC (1982) Identification of a human neuroectodermal tumor antigen (OFA-I-2) as ganglioside GD2. Proc Natl Acad Sci USA 79:7629–7633

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant PO1 CA33049 from the National Institutes of Health and by the Koodish Family Charitable Lead Trust. Dr. Livingston and Dr. Ragupathi are paid consultants and share holders in MabVax Therapeutics Inc. who has licensed the GD2-KLH vaccine from MSKCC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip O. Livingston.

Additional information

The designations GM2, GD2 and GD3 are used in accordance with the abbreviated ganglioside nomenclature of Svennerholm [1].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, SK., Wu, X., Ragupathi, G. et al. Impact of minimal tumor burden on antibody response to vaccination. Cancer Immunol Immunother 60, 621–627 (2011). https://doi.org/10.1007/s00262-011-0975-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-011-0975-9

Keywords

Navigation