Skip to main content

Advertisement

Log in

The effect of ultrasound on the healing of muscle-pediculated bone graft in scaphoid non-union

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

The use of pedicled vascularised bone grafts from the distal radius makes it possible to transfer bone with a preserved circulation and viable osteoclasts and osteoblasts. Experiments performed at the basic science level has provided substantial evidence that low-intensity ultrasound can accelerate and augment the fracture healing process. Only an adequate double-blind trial comparing treatment by ultrasound stimulation in patients treated by similar surgical techniques can provide evidence of the true effect of ultrasound. This paper describes the results of such a trial. From 1999 to 2004, 21 fractures of the scaphoid with established non-union treated with vascularised pedicle bone graft were selected for inclusion in a double-blind trial. All patients were males, with an average age of 26.7 years (range 17–42 years) and an average interval between injury and surgery of 38.4 months (range 3 months–10 years). Low-intensity ultrasound was delivered using a TheraMed 101-B bone-growth stimulator (30 mW/cm2, 20 min/day), which was modified to accomplish double-blinding. These modifications did not affect the designated active units. The placebo units were adjusted to give no ultrasound signal output across the transducer. Externally, all units appeared identical but were marked with individual code numbers. Patients were randomly allocated to either an active or placebo stimulation. Follow-up averaged 2.3 years (range 1–4 years). All patients achieved fracture union (active and placebo groups), but compared with the placebo device (11 patients), the active device (ten patients) accelerated healing by 38 days (56±3.2 days compared with 94±4.8 days, p<0.0001, analysis of variance).

Résumé

L’utilisation de greffes pediculées de l’extrémité distale du radius est possible. Elles peuvent être utilisées comme transferts osseux pourvu que l’on préserve la vascularisation garant d’une bonne circulation avec des osteoclastes et osteoblates bienvivants. De nombreuses expérimentations ont également montré que l’utilisation d’ultrasons de basse intensité peut accélérer et augmenter le processus de consolidation osseuse. Seule une étude en double aveugle stimulant l’ostéogènèse par ultrasons sur des patients opérés avec des techniques identiques peut mettre en évidence le véritable effet de ceux-ci. Le but decetravail est de décrire les résultats d’un tel essai. Entre 1999 et 2004 21 fractures du scaphoide avec pseudarthrose ont été traitées par une greffe pédiculée et sélectionnée pour cet essai en double aveugle. Tous les patients étaient de sexe masculin, l’âge moyen était de 26 ans (17 à 42 ans) et le temps moyen entre le traumatisme et l’intervention chirurgicale a été de 38,4 mois (3 mois à 10 ans). Des ultrasons de basse intensité ont été utilisés avec un stimulateur de type TheraMed 101-B (30 mW/cm2, 20 minutes par jour) en double aveugle. Un appareil de type placébo a été également utilisé. L’apparence externe des deux appareils était absolument identique. Les patients ont été randomisés entre ceux recevant la stimulation placébo et ceux recevant une stimulation active d’ultrason. Après un suivi moyen de 2,3 ans (de 1 à 4 ans), tous les patients ont consolidé, aussi bien dans la série avec ultrasons que dans la série placébo. Si l’on compare la série avec appareil de type placébo (11 patients) à la série utilisant un appareil délivrant des ultrasons (10 patients), la guérison a été plus rapide dans cette dernière série de 38 jours (56±3,2 jours, versus 94±4,8 jours; p<0.0001 en analyse devariance).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kawai H, et al (1988) Pronator quadratus pedicled bone graft for old scaphoid fractures. J Bone Joint Surg 70:829–831

    Google Scholar 

  2. Rodríguez O, Chong J, Monreal R (2004) Stimulation of tissue healing by ultrasound: physical mechanisms of action. AIP Conf Proc 724(1):106

    Article  Google Scholar 

  3. Huntington TW (1905) Case of bone transference: use of a segment of fibula to supply a defect in the tibia. Ann Surg 41:249–251

    Article  PubMed  CAS  Google Scholar 

  4. Roy-Camille R (1965) Fractures et pseudarthroses du scaphoide moyen: utilisation d’un greffo pedicule. Actual Chir Ortho R Poincare 4:197–214

    Google Scholar 

  5. Barth A (1895) Histologische untersuchungen über knochenimplantationen. Beitr Pathol Anat Allg Pathol 17:65–142

    Google Scholar 

  6. Maylia E, Nokes LD (1999) The use of ultrasonics in orthopaedics—a review. Technol Health Care 7:1–28

    CAS  Google Scholar 

  7. Ziskin MC (1987) Applications of ultrasound in medicine—comparison with other modalities. In: Rapacholi MH, Grandolfo M, Rindi A (eds) Ultrasound: medical applications, biological effects, and hazard potential. Plenum Press, New York, pp 49–59

    Google Scholar 

  8. Wells PNT (1985) Surgical applications of ultrasound. In: Nyborg WL, Ziskin MC (eds) Biological effects of ultrasound. Churchill Livingstone, New York, pp 157–167

    Google Scholar 

  9. Moed BR, Kim EC, van Holsbeeck M, Schaffler MB, Subramanian S, Bouffard JA, Craig JG (1998) Ultrasound for the early diagnosis of tibial fracture healing after static interlocked nailing without reaming: histologic correlation using a canine model. J Orthop Trauma 12:200–205

    Article  PubMed  CAS  Google Scholar 

  10. Moed BR, Subramanian S, van Holsbeeck M, Watson JT, Cramer KE, Karges DE, Craig JG, Bouffard JA (1998) Ultrasound for the early diagnosis of tibial fracture healing after static interlocked nailing without reaming: clinical results. J Orthop Trauma 12:206–213

    Article  PubMed  CAS  Google Scholar 

  11. St John Brown R (1984) How safe is diagnostic ultrasonography? J Can Med Assoc 131:307–311

    Google Scholar 

  12. Corradi C, Cozzolino A (1952) [The action of ultrasound on the evolution of an ex-perimental fracture in rabbits]. Minerva Ortop 55:44–45

    Google Scholar 

  13. Corradi C, Cozzolino A (1953) Ultrasound and bone callus formation during function. Arch Ortop 66:77–98

    PubMed  CAS  Google Scholar 

  14. Dyson M, Brookes M (1983) Stimulation of bone repair by ultrasound. Ultrasound Med Biol Suppl 2:61–66

    Google Scholar 

  15. Xavier CAM, Duarte LR (1983) Stimulation of bone callus by ultrasound. Rev Brasil Ortop 18:73–80

    Google Scholar 

  16. Reuter U, Strempel F, John F, Knoch HG (1984) Modification of bone fracture healing by ultrasound in an animal experimental model. Z Exp Chir Transplant Kunstliche Organe 17:290–297

    PubMed  CAS  Google Scholar 

  17. Reuter U, Strempel F, John F, Dürig E (1987) Modification of fracture healing by ultrasonics in an animal model. 2. Radiologic and histologic results. Z Exp Chir Transplant Kunstliche Organe 20:294–302

    PubMed  CAS  Google Scholar 

  18. Duarte LR (1983) The stimulation of bone growth by ultrasound. Arch Orthop Trauma Surg 101:153–159

    Article  PubMed  CAS  Google Scholar 

  19. Klug W, Franke WG, Schulze M (1986) Animal experimental scintigraphic obser-vations of the course of secondary fracture healing without and with ultrasound stimulation. Z Exp Chir Transplant Kunstliche Organe 19:115–185

    Google Scholar 

  20. Klug W, Franke WG, Knoch HG (1986) Scintigraphic control of bone-fracture healing under ultrasonic stimulation: an animal experimental study. Eur J Nucl Med 11:494–497

    Article  PubMed  CAS  Google Scholar 

  21. Pilla AA, Mont MA, Nasser PR, Khan SA, Figueiredo M, Kaufman JJ, Siffert RS (1990) Non-invasive low-intensity pulsed ultrasound accelerates bone healing in the rabbit. J Orthop Trauma 4:246–453

    Article  PubMed  CAS  Google Scholar 

  22. Chapman IV, MacNally NA, Tucker S (1980) Ultrasound-induced changes in rates of influx and efflux of potassium ions in rat thymocytes in vitro. Ultrasound Med Biol 6:47–58

    Article  PubMed  CAS  Google Scholar 

  23. Ryaby JT, Bachner EJ, Bendo JA, Dalton PF, Tannenbaum S, Pilla AA (1989) Low intensity pulsed ultrasound increases calcium incorporation in both differentiating cartilage and bone cell cultures. Trans Orthop Res Soc 14:15

    Google Scholar 

  24. Ryaby JT, Mathew J, Pilla AA, Duarte-Alves P (1991) Low-intensity pulsed ultrasound modulates adenylate cyclase activity and transforming growth factor beta synthesis. In: Brighton CT, Pollack SR (eds) Electromagnetics in medicine and biology. San Francisco Press, San Francisco, pp 95–100

    Google Scholar 

  25. Ryaby JT, Mathew J, Duarte-Alves P (1992) Low intensity pulsed ultrasound affects adenylate cyclase activity and TGF-B synthesis in osteoblastic cells. Trans Orthop Res Soc 7:590

    Google Scholar 

  26. Parvizi J, Wu CC, Lewallen DG, Greenleaf JF, Bolander ME (1999) Low-intensity ultrasound stimulates proteoglycan synthesis in rat chondrocytes by increasing aggrecan gene expression. J Orthop Res 17:488–494

    Article  PubMed  CAS  Google Scholar 

  27. Kokubu T, Matsui N, Fujioka H, Tsunoda M, Mizuno K (1999) Low intensity pulsed ultrasound exposure increases prostaglandin E2 production via the induction of cyclooxygenase-2 mRNA in mouse osteoblasts. Biochem Biophys Res Commun 256:284–287

    Article  CAS  Google Scholar 

  28. Ito M, Azuma Y, Ohta T, Komoriya K (2000) Effects of ultrasound and 1,25– dihydroxyvitamin D3 on growth factor secretion in co-cultures of osteoblasts and endothelial cells. Ultrasound Med Biol 26:161–166

    Article  PubMed  CAS  Google Scholar 

  29. Rawool D, Goldberg B, Forsberg F, Winder A, Talish R, Hume E Power (1998) Doppler assessment of vascular changes during fracture treatment with low-intensity ultrasound. Trans Radiol Soc North Am 83:1185

    Google Scholar 

  30. Xavier C, Duarte L (1987) Treatment of non-unions by ultrasound stimulation: first clinical applications. Read at the meeting of the Latin-American Orthopedic Association and the annual meeting of the American Academy of Orthopaedic Surgeons, San Francisco, January 25 1987

    Google Scholar 

  31. Duarte L, Choffie M (1994) Low intensity pulsed ultrasound and effects on ununited fractures. Presented at the Orthopaedic Health Conference, University Hospital, University of Sao Paulo, Brazil, June 1994

    Google Scholar 

  32. Hadjiargyrou K, McLeod K, Ryaby J, Rubin C (1998) Enhancement of fracture healing by low intensity ultrasound. Clin Orthop Oct 355:216–219

    Google Scholar 

  33. Mayr S, Wagner M, Ecker M, Ruter A (1999) Ultrasound therapy for non-unions. Three case reports. Unfallchirug 102(3):191–196

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monreal Ricardo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ricardo, M. The effect of ultrasound on the healing of muscle-pediculated bone graft in scaphoid non-union. International Orthopaedics (SICO 30, 123–127 (2006). https://doi.org/10.1007/s00264-005-0034-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-005-0034-2

Keywords

Navigation