Skip to main content

Advertisement

Log in

Combined automated cell and flow cytometric analysis enables recognition of persistent polyclonal B-cell lymphocytosis (PPBL), a study of 25 patients

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Persistent polyclonal B-cell lymphocytosis (PPBL) is an extremely rare disorder, which occurs almost exclusively in smoking women and is characterized by a lymphocytosis with circulating binucleated lymphocytes. We analyzed 25 PPBL patients with respect to immunophenotype and by adaptive cluster analysis system (ACAS). Furthermore, HLA type, presence of Epstein–Barr virus (EBV) DNA in B cells, and clinical data were evaluated. Overall, the median percentages of B cells in PPBL patients with expression of CD5dim, CD23dim, CD25, CD27, and FMC7 were 21%, 38%, 16%, 74%, and 93%. Compared to normal controls, ACAS revealed a subset of nucleic-acid-rich lymphocytes located between the regular lymphocyte and regular monocyte region. Sixteen (64%) of 25 patients carried a HLA DR7 phenotype. Quantitative real-time polymerase chain reaction analysis did not detect relevant amounts of EBV DNA in circulating B cells of any patient. During a median follow-up of 5 years, a single patient developed lymphoplasmacytic lymphoma. The abnormal morphology and frequent, albeit dim, expression of CD5 and CD23 in PPBL may result in erratic diagnostic assignment of this benign disorder. However, incorporation of immunophenotyping and ACAS into the diagnostic algorithm allows recognition of PPBL in routine analysis and its differentiation from malignant B cell lymphoproliferative diseases. We found that an infection of a significant percentage of PPBL cells by EBV is unlikely. The observation of malignant lymphoma in a single patient implicates that evolution into a clonal malignant transformation may occasionally occur in PPBL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ahmad E, Garcia D, Davis BH (2002) Clinical utility of CD23 and FMC7 antigen coexistent expression in B-cell lymphoproliferative disorder subclassification. Cytometry 50:1–7 doi:10.1002/cyto.10045

    Article  PubMed  CAS  Google Scholar 

  2. Berland R, Wortis HH (2002) Origins and functions of B-1 cells with notes on the role of CD5. Annu Rev Immunol 20:253–300 doi:10.1146/annurev.immunol.20.100301.064833

    Article  PubMed  CAS  Google Scholar 

  3. Brisslert M, Bokarewa M, Larsson P, Wing K, Collins LV, Tarkowski A (2006) Phenotypic and functional characterization of human CD25+ B cells. Immunology 117:548–557 doi:10.1111/j.1365-2567.2006.02331.x

    Article  PubMed  CAS  Google Scholar 

  4. Burmeister T, Schwartz S, Horst HA, Rieder H, Gökbuget N, Hoelzer D et al (2005) Molecular heterogeneity of sporadic adult Burkitt-type leukemia/lymphoma as revealed by PCR and cytogenetics: correlation with morphology, immunology and clinical features. Leukemia 19:1391–1398 doi:10.1038/sj.leu.2403847

    Article  PubMed  CAS  Google Scholar 

  5. Callet-Bauchu E, Renard N, Gazzo S, Poncet C, Morel D, Pages J et al (1997) Distribution of the cytogenetic abnormality +i(3)(q10) in persistent polyclonal B-cell lymphocytosis: a FICTION study in three cases. Br J Haematol 99:531–536 doi:10.1046/j.1365-2141.1997.4233234.x

    Article  PubMed  CAS  Google Scholar 

  6. Carr R, Fishlock K, Matutes E (1997) Persistent polyclonal B-cell lymphocytosis in identical twins. Br J Haematol 96:272–274 doi:10.1046/j.1365-2141.1997.d01-2025.x

    Article  PubMed  CAS  Google Scholar 

  7. Chiu BC, Dave BJ, Blair A, Gapstur SM, Zahm SH, Weisenburger DD (2006) Agricultural pesticide use and risk of t(14;18)-defined subtypes of non-Hodgkin lymphoma. Blood 108:1363–1369 doi:10.1182/blood-2005-12-008755

    Article  PubMed  CAS  Google Scholar 

  8. Damle RN, Ghiotto F, Valetto A, Albesiano E, Fais F, Yan XJ et al (2002) B-cell chronic lymphocytic leukemia cells express a surface membrane phenotype of activated, antigen-experienced B lymphocytes. Blood 99:4087–4093 doi:10.1182/blood.V99.11.4087

    Article  PubMed  CAS  Google Scholar 

  9. Delage R, Jacques L, Massinga-Loembe M, Poulin J, Bilodeau D, Mignault C et al (2001) Persistent polyclonal B-cell lymphocytosis: further evidence for a genetic disorder associated with B-cell abnormalities. Br J Haematol 114:666–670 doi:10.1046/j.1365-2141.2001.02975.x

    Article  PubMed  CAS  Google Scholar 

  10. Duan B, Morel L (2006) Role of B-1a cells in autoimmunity. Autoimmun Rev 5:403–408 doi:10.1016/j.autrev.2005.10.007

    Article  PubMed  CAS  Google Scholar 

  11. Feugier P, De March AK, Lesesve JF, Monhoven N, Dorvaux V, Braun F et al (2004) Intravascular bone marrow accumulation in persistent polyclonal lymphocytosis: a misleading feature for B-cell neoplasm. Mod Pathol 17:1087–1096 doi:10.1038/modpathol.3800156

    Article  PubMed  Google Scholar 

  12. Ghia P, Ferreri AM, Galigaris-Cappio F (2007) Chronic lymphocytic leukemia. Crit Rev Oncol Hematol 64:234–246 doi:10.1016/j.critrevonc.2007.04.008

    Article  PubMed  Google Scholar 

  13. Gordon DS, Jones BM, Browning SW, Spira TJ, Lawrence DN (1982) Persistent polyclonal lymphocytosis of B lymphocytes. N Engl J Med 307:232–236

    PubMed  CAS  Google Scholar 

  14. Hardy RR, Hayakawa K (2001) B cell development pathways. Annu Rev Immunol 19:595–621 doi:10.1146/annurev.immunol.19.1.595

    Article  PubMed  CAS  Google Scholar 

  15. Hermouet S, Sutton CA, Rose TM, Greenblatt RJ, Corre I, Garand R et al (2003) Qualitative and quantitative analysis of human herpesviruses in chronic and acute B cell lymphocytic leukemia and in multiple myeloma. Leukemia 17:185–195 doi:10.1038/sj.leu.2402748

    Article  PubMed  CAS  Google Scholar 

  16. Himmelmann A, Gautschi O, Nawrath M, Bolliger U, Fehr J, Stahel RA (2001) Persistent polyclonal B-cell lymphocytosis is an expansion of functional IgD(+)CD27(+) memory B cells. Br J Haematol 114:400–405 doi:10.1046/j.1365-2141.2001.02938.x

    Article  PubMed  CAS  Google Scholar 

  17. Hwang SH, Sohn YH, Oh HB, Hwang CY, Lee SH, Shin ES et al (2007) Human leukocyte antigen alleles and haplotypes associated with chronicity of hepatitis B virus infection in Koreans. Arch Pathol Lab Med 131:117–121

    PubMed  Google Scholar 

  18. Jones EH, Biggar RJ, Nkrumah FK, Lawler SD (1985) HLA-DR7 association with African Burkitt’s lymphoma. Hum Immunol 13:211–217 doi:10.1016/0198-8859(85)90013-8

    Article  PubMed  CAS  Google Scholar 

  19. Kimura H, Morita M, Yabuta Y, Kuzushima K, Kato K, Kojima S et al (1999) Quantitative analysis of Epstein-Barr virus load by using a real-time PCR assay. J Clin Microbiol 37:132–136

    PubMed  CAS  Google Scholar 

  20. Klein U, Rajewsky K, Küppers R (1998) Human immunoglobulin (Ig)M+IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells. J Exp Med 188:1679–1689 doi:10.1084/jem.188.9.1679

    Article  PubMed  CAS  Google Scholar 

  21. Lawlor E, Murray M, O’Briain DS, Blaney C, Foroni L, Sarsfield P et al (1991) Persistent polyclonal B lymphocytosis with Epstein-Barr virus antibodies and subsequent malignant pulmonary blastoma. J Clin Pathol 44:341–342 doi:10.1136/jcp.44.4.341

    Article  PubMed  CAS  Google Scholar 

  22. Loembe MM, Neron S, Delage R, Darveau A (2002) Analysis of expressed V(H) genes in persistent polyclonal B cell lymphocytosis reveals absence of selection in CD27+IgM+IgD+ memory B cells. Eur J Immunol 32:3678–3688 doi:10.1002/1521-4141(200212)32:12<3678::AID-IMMU3678>3.0.CO;2-4

    Article  PubMed  CAS  Google Scholar 

  23. Masmoudi H, Mota-Santos T, Huetz F, Coutinho A, Cazenave PA (1990) All T15 Id-positive antibodies (but not the majority of VHT15+ antibodies) are produced by peritoneal CD5+ B lymphocytes. Int Immunol 2:515–520 doi:10.1093/intimm/2.6.515

    Article  PubMed  CAS  Google Scholar 

  24. Maurer D, Fischer GF, Fae I, Majdic O, Stuhlmeier K, Von Jeney N et al (1992) IgM and IgG but not cytokine secretion is restricted to the CD27+ B lymphocyte subset. J Immunol 148:3700–3705

    PubMed  CAS  Google Scholar 

  25. Mitterer M, Pescosta N, Fend F, Larcher C, Prang N, Schwarzmann F et al (1995) Chronic active Epstein-Barr virus disease in a case of persistent polyclonal B-cell lymphocytosis. Br J Haematol 90:526–531 doi:10.1111/j.1365-2141.1995.tb05579.x

    Article  PubMed  CAS  Google Scholar 

  26. Mossafa H, Malaure H, Maynadie M, Valensi F, Schillinger F, Garand R et al (1999) Persistent polyclonal B lymphocytosis with binucleated lymphocytes: a study of 25 cases. Groupe Francais d’Hematologie Cellulaire. Br J Haematol 104:486–493 doi:10.1046/j.1365-2141.1999.01200.x

    Article  PubMed  CAS  Google Scholar 

  27. Mossafa H, Tapia S, Flandrin G, Troussard X, Groupe Francais d’Hematologie Cellulaire (GFHC) (2004) Chromosomal instability and ATR amplification gene in patients with persistent and polyclonal B-cell lymphocytosis (PPBL). Leuk Lymphoma 45:1401–1406 doi:10.1080/10428194042000191738

    Article  PubMed  CAS  Google Scholar 

  28. Reeder CB, Conley CR (1999) CD5+ persistent polyclonal B-cell lymphocytosis in a male. Leuk Lymphoma 33:593–596

    PubMed  CAS  Google Scholar 

  29. Roy J, Ryckman C, Bernier V, Whittom R, Delage R (1998) Large cell lymphoma complicating persistent polyclonal B cell lymphocytosis. Leukemia 12:1026–1030 doi:10.1038/sj.leu.2401040

    Article  PubMed  CAS  Google Scholar 

  30. Salcedo I, Campos-Caro A, Sampalo A, Reales E, Brieva JA (2002) Persistent polyclonal B lymphocytosis: an expansion of cells showing IgVH gene mutations and phenotypic features of normal lymphocytes from the CD27+ marginal zone B-cell compartment. Br J Haematol 116:662–666 doi:10.1046/j.0007-1048.2001.03327.x

    Article  PubMed  CAS  Google Scholar 

  31. Schwartz S, Rieder H, Schläger B, Burmeister T, Fischer L, Thiel E (2003) Expression of the human homologue of rat NG2 in adult acute lymphoblastic leukemia: close association with MLL rearrangement and a CD10(−)/CD24(−)/CD65s(+)/CD15(+) B-cell phenotype. Leukemia 17:1589–1595 doi:10.1038/sj.leu.2402989

    Article  PubMed  CAS  Google Scholar 

  32. Serke S, Schwaner I, Yordanova M, Szczepek A, Huhn D (2001) Monoclonal antibody FMC7 detects a conformational epitope on the CD20 molecule: evidence from phenotyping after rituxan therapy and transfectant cell analyses. Cytometry 46:98–104 doi:10.1002/cyto.1071

    Article  PubMed  CAS  Google Scholar 

  33. She RC, Stevenson J, Phansalkar AR, Hillyard DR, Litwin CM, Petti CA (2007) Limitations of polymerase chain reaction testing for diagnosing acute Epstein–Barr virus infections. Diagn Microbiol Infect Dis 58:333–335 doi:10.1016/j.diagmicrobio.2007.01.014

    Article  PubMed  CAS  Google Scholar 

  34. Stamminger G, Auch D, Diem H, Sinha P (2002) Performance of the XE-2100 leucocyte differential. Clin Lab Haematol 24:271–280 doi:10.1046/j.1365-2257.2002.00458.x

    Article  PubMed  CAS  Google Scholar 

  35. Stevens SJ, Vervoort MB, van den Brule AJ, Meenhorst PL, Meijer CJ, Middeldorp JM (1999) Monitoring of Epstein–Barr virus DNA load in peripheral blood by quantitative competitive PCR. J Clin Microbiol 37:2852–2857

    PubMed  CAS  Google Scholar 

  36. Tangye SG, Liu YJ, Aversa G, Phillips JH, de Vries JE (1998) Identification of functional human splenic memory B cells by expression of CD148 and CD27. J Exp Med 188:1691–1703 doi:10.1084/jem.188.9.1691

    Article  PubMed  CAS  Google Scholar 

  37. Tonelli S, Vanzanelli P, Sacchi S, Fiorani C, Castelli I, Temperani P et al (2000) Persistent polyclonal B lymphocytosis: morphological, immunological, cytogenetic and molecular analysis of an Italian case. Leuk Res 24:877–879 doi:10.1016/S0145-2126(00)00069-2

    Article  PubMed  CAS  Google Scholar 

  38. Troussard X, Flandrin G (1996) Chronic B-cell lymphocytosis with binucleated lymphocytes (LWBL): a review of 38 cases. Leuk Lymphoma 20:275–279 doi:10.3109/10428199609051618

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to B. Komischke, R. Lippoldt, and M. Molkentin for skillful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Schmidt-Hieber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt-Hieber, M., Burmeister, T., Weimann, A. et al. Combined automated cell and flow cytometric analysis enables recognition of persistent polyclonal B-cell lymphocytosis (PPBL), a study of 25 patients. Ann Hematol 87, 829–836 (2008). https://doi.org/10.1007/s00277-008-0529-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-008-0529-1

Keywords

Navigation