Skip to main content

Advertisement

Log in

Do anthocyanins and anthocyanidins, cancer chemopreventive pigments in the diet, merit development as potential drugs?

  • Commentary
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Anthocyanins, plant pigments in fruits and berries, have been shown to delay cancer development in rodent models of carcinogenesis, especially those of the colorectal tract. Anthocyanins and anthocyanidins, their aglycons, especially cyanidin and delphinidin, have been subjected to extensive mechanistic studies. In cells in vitro, both glycosides and aglycons engage an array of anti-oncogenic mechanisms including anti-proliferation, induction of apoptosis and inhibition of activities of oncogenic transcription factors and protein tyrosine kinases. Anthocyanins and anthocyanidins exist as four isomers, interconversion between which depends on pH, temperature and access to light. Anthocyanidins are much more prone to avid chemical decomposition than the glycosides, and they only survive for minutes in the biophase. These pharmaceutical issues are very important determinants of the suitability of these flavonoids for potential development as cancer chemopreventive drugs, and they have hitherto not received adequate attention. In the light of their robust cancer chemopreventive efficacy in experimental models and their superior stability as compared to that of the aglycons, the anthocyanins seem much more suitable for further drug development than their anthocyanidin counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. D’Incalci MC, Steward WP, Gescher AJ (2005) Use of cancer chemopreventive phytochemicals as antineoplastic agents. Lancet Oncol 6:899–904

    Article  PubMed  CAS  Google Scholar 

  2. Kong JM, Chia LS, Goh NK et al (2003) Analysis and biological activities of anthocyanins. Phytochemistry 64:923–933

    Article  PubMed  CAS  Google Scholar 

  3. McGhie TK, Walton MC (2007) The bioavailability and absorption of anthocyanins: towards a better understanding. Mol Nutr Food Res 51:702–713

    Article  PubMed  CAS  Google Scholar 

  4. Aura AM, Martin-Lopez P, O’Leary KA et al (2005) In vitro metabolism of anthocyanins by human gut microflora. Eur J Nutr 44:133–142

    Article  PubMed  CAS  Google Scholar 

  5. McGhie TK, Ainge GD, Barnett LE et al (2003) Anthocyanin glycosides from berry fruit are absorbed and excreted unmetabolized by both humans and rats. J Agric Food Chem 51:4539–4548

    Article  PubMed  CAS  Google Scholar 

  6. Vitaglione P, Donnarumma G, Napolitano A et al (2007) Protocatechuic acid is the major human metabolite of cyanidin-glucosides. J Nutr 137:2043–2048

    PubMed  CAS  Google Scholar 

  7. Ichiyanagi TRM, Hatano Y, Konishi T et al (2007) Protocatechuic acid is not the major metabolite in rat blood plasma after oral administration of cyanidin 3-O-beta-d-glucopyranoside. Food Chem 105:1032–1039

    Article  CAS  Google Scholar 

  8. Kay CD, Mazza G, Holub BJ et al (2004) Anthocyanin metabolites in human urine and serum. Br J Nutr 91:933–942

    Article  PubMed  CAS  Google Scholar 

  9. Kay CD, Mazza GJ, Holub BJ (2005) Anthocyanins exist in the circulation primarily as metabolites in adult men. J Nutr 135:2582–2588

    PubMed  CAS  Google Scholar 

  10. Felgines C, Talavera S, Texier O et al (2005) Blackberry anthocyanins are mainly recovered from urine as methylated and glucuronidated conjugates in humans. J Agric Food Chem 53:7721–7727

    Article  PubMed  CAS  Google Scholar 

  11. Felgines C, Talavera S, Gonthier MP et al (2003) Strawberry anthocyanins are recovered in urine as glucuro- and sulfo-conjugates in humans. J Nutr 133:1296–1301

    PubMed  CAS  Google Scholar 

  12. Mullen W, Edwards CA, Serafini M et al (2008) Bioavailability of pelargonidin-3-O-glucoside and its metabolites in humans following the ingestion of strawberries with and without cream. J Agric Food Chem 56:713–719

    Article  PubMed  CAS  Google Scholar 

  13. Talavera S, Felgines C, Texier O et al (2005) Anthocyanin metabolism in rats and their distribution to digestive area, kidney, and brain. J Agric Food Chem 53:3902–3908

    Article  PubMed  CAS  Google Scholar 

  14. Wu X, Pittman HE, McKay S et al (2005) Aglycones and sugar moieties alter anthocyanin absorption and metabolism after berry consumption in weanling pigs. J Nutr 135:2417–2424

    PubMed  CAS  Google Scholar 

  15. Cooke D, Schwarz M, Boocock D et al (2006) Effect of cyanidin-3-glucoside and an anthocyanin mixture from bilberry on adenoma development in the ApcMin mouse model of intestinal carcinogenesis—relationship with tissue anthocyanin levels. Int J Cancer 119:2213–2220

    Article  PubMed  CAS  Google Scholar 

  16. Bobe G, Wang B, Seeram NP et al (2006) Dietary anthocyanin-rich tart cherry extract inhibits intestinal tumorigenesis in APC(Min) mice fed suboptimal levels of sulindac. J Agric Food Chem 54:9322–9328

    Article  PubMed  CAS  Google Scholar 

  17. Kang SY, Seeram NP, Nair MG et al (2003) Tart cherry anthocyanins inhibit tumor development in Apc(Min) mice and reduce proliferation of human colon cancer cells. Cancer Lett 194:13–19

    Article  PubMed  CAS  Google Scholar 

  18. Hagiwara A, Miyashita K, Nakanishi T et al (2001) Pronounced inhibition by a natural anthocyanin, purple corn color, of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-associated colorectal carcinogenesis in male F344 rats pretreated with 1,2-dimethylhydrazine. Cancer Lett 171:17–25

    Article  PubMed  CAS  Google Scholar 

  19. Hagiwara A, Yoshino H, Ichihara T et al (2002) Prevention by natural food anthocyanins, purple sweet potato color and red cabbage color, of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-associated colorectal carcinogenesis in rats initiated with 1,2-dimethylhydrazine. J Toxicol Sci 27:57–68

    Article  PubMed  CAS  Google Scholar 

  20. Harris GK, Gupta A, Nines RG et al (2001) Effects of lyophilized black raspberries on azoxymethane-induced colon cancer and 8-hydroxy-2′-deoxyguanosine levels in the Fischer 344 rat. Nutr Cancer 40:125–133

    Article  PubMed  CAS  Google Scholar 

  21. Lala G, Malik M, Zhao C et al (2006) Anthocyanin-rich extracts inhibit multiple biomarkers of colon cancer in rats. Nutr Cancer 54:84–93

    Article  PubMed  CAS  Google Scholar 

  22. Shumway BS, Kresty LA, Larsen PE et al (2008) Effects of a topically applied bioadhesive berry gel on loss of heterozygosity indices in premalignant oral lesions. Clin Cancer Res 14:2421–2430

    Article  PubMed  Google Scholar 

  23. Stoner GD, Wang LS, Zikri N et al (2007) Cancer prevention with freeze-dried berries and berry components. Semin Cancer Biol 17:403–410

    Article  PubMed  CAS  Google Scholar 

  24. Kresty LA, Frankel WL, Hammond CD et al (2006) Transitioning from preclinical to clinical chemopreventive assessments of lyophilized black raspberries: interim results show berries modulate markers of oxidative stress in Barrett’s esophagus patients. Nutr Cancer 54:148–156

    Article  PubMed  CAS  Google Scholar 

  25. Thomasset S, Berry DP, Cai H, et al. (2009) Pilot study of oral anthocyanins for colorectal cancer chemoprevention. Cancer Prev Res (in press)

  26. Hafeez BBSI, Asim M, Malik A et al (2008) A dietary anthocyanidin delphinidin induces apoptosis of human prostate cancer PC3 cells in vitro and in vivo: involvement of nuclear factor-kB signaling. Cancer Res 68:8564–8572

    Article  PubMed  CAS  Google Scholar 

  27. Shih PH, Yeh CT, Yen GC (2005) Effects of anthocyanidin on the inhibition of proliferation and induction of apoptosis in human gastric adenocarcinoma cells. Food Chem Toxicol 43:1557–1566

    Article  PubMed  CAS  Google Scholar 

  28. Hyun JW, Chung HS (2004) Cyanidin and malvidin from Oryza sativa cv. Heugjinjubyeo mediate cytotoxicity against human monocytic leukemia cells by arrest of G(2)/M phase and induction of apoptosis. J Agric Food Chem 52:2213–2217

    Article  PubMed  CAS  Google Scholar 

  29. Katsube N, Iwashita K, Tsushida T et al (2003) Induction of apoptosis in cancer cells by Bilberry (Vaccinium myrtillus) and the anthocyanins. J Agric Food Chem 51:68–75

    Article  PubMed  CAS  Google Scholar 

  30. Syed DN, Afaq F, Sarfaraz S et al (2008) Delphinidin inhibits cell proliferation and invasion via modulation of Met receptor phosphorylation. Toxicol Appl Pharmacol 231:52–60

    Article  PubMed  CAS  Google Scholar 

  31. Zhao C, Giusti MM, Malik M, Moyer MP, Magnuson BA (2004) Effects of commercial anthocyanin rich extracts on colonic cancer and nontumorigenic colon cell growth. J Agric Food Chem 52:6122–6128

    Article  PubMed  CAS  Google Scholar 

  32. Kern M, Fridrich D, Reichert J et al (2007) Limited stability in cell culture medium and hydrogen peroxide formation affect the growth inhibitory properties of delphinidin and its degradation product gallic acid. Mol Nutr Food Res 51:1163–1172

    Article  PubMed  CAS  Google Scholar 

  33. Meiers S, Kemény M, Weyand U, Gastpar R, von Angerer E, Marko D (2001) The anthocyanidins cyanidin and delphinidin are potent inhibitors of the epidermal growth-factor receptor. J Agric Food Chem 49:958–962

    Article  PubMed  CAS  Google Scholar 

  34. Marko D, Puppel N, Tjaden Z et al (2004) The substitution pattern of anthocyanidins affects different cellular signaling cascades regulating cell proliferation. Mol Nutr Food Res 48:318–325

    Article  PubMed  CAS  Google Scholar 

  35. Fridrich D, Teller N, Esselen M et al (2008) Comparison of delphinidin, quercetin and (−)-epigallocatechin-3-gallate as inhibitors of the EGFR and the ErbB2 receptor phosphorylation. Mol Nutr Food Res 52:815–822

    Article  PubMed  CAS  Google Scholar 

  36. Afaq F, Zaman N, Khan N et al (2008) Inhibition of epidermal growth factor receptor signaling pathway by delphinidin, an anthocyanidin in pigmented fruits and vegetables. Int J Cancer 123:1508–1515

    Article  PubMed  CAS  Google Scholar 

  37. Fleschhut JKF, Rechkemmer G, Kulling SE (2006) Stability and biotransformation of various dietary anthocyanins in vitro. Eur J Nutr 45:7–18

    Article  PubMed  CAS  Google Scholar 

  38. Cooke D, Steward WP, Gescher AJ et al (2005) Anthocyans from fruits and vegetables—does bright colour signal cancer chemopreventive activity? Eur J Cancer 41:1931–1940

    Article  PubMed  CAS  Google Scholar 

  39. Ding M, Feng R, Wang SY et al (2006) Cyanidin-3-glucoside, a natural product derived from blackberry, exhibits chemopreventive and chemotherapeutic activity. J Biol Chem 281:17359–17368

    Article  PubMed  CAS  Google Scholar 

  40. Teller N, Thiele W, Marczylo TH et al (2009) Impact of anthocyanin-rich mixtures extracted from bilberries and grapes on receptor tyrosine kinases. J Agric Food Chem (in press)

  41. Giordano LCW, Rapisarda P, Donati MB et al (2007) Development and validation of an LC-MS/MS analysis for simultaneous determination of delphinidin-3-glucoside, cyanidin-3-glucoside and cyanidin-3-(6-malonylglucoside) in human plasma and urine after blood orange juice administration. J Sep Sci 30:3127–3136

    Article  PubMed  CAS  Google Scholar 

  42. Singletary KW, Stansbury MJ, Giusti M et al (2003) Inhibition of rat mammary tumorigenesis by Concord grape juice constituents. J Agric Food Chem 51:7280–7286

    Article  PubMed  CAS  Google Scholar 

  43. Jung KJ, Wallig MA, Singletary KW (2006) Purple grape juice inhibits 7,12-dimethylbenz[a]anthracene (DMBA)-induced rat mammary tumorigenesis and in vivo DMBA-DNA adduct formation. Cancer Lett 233:279–288

    Article  PubMed  CAS  Google Scholar 

  44. Kim JM, Kim JS, Yoo H et al (2008) Effects of black soybean [Glycine max (L) Merr] seed coats and its anthocyanidins on colonic inflammation and cell proliferation in vitro and in vivo. J Agric Food Chem 56:8427–8433

    Article  PubMed  CAS  Google Scholar 

  45. Carlton PS, Kresty LA, Stoner GD (2000) Failure of dietary lyophilized strawberries to inhibit 4-(methylnitrosamino)-1-butanone and benzo[a]pyrene-induced lung tumorigenesis in strain A/J mice. Cancer Lett 159:113–117

    Article  PubMed  CAS  Google Scholar 

  46. Stoner GD, Kresty LA, Carlton PS (1999) Isothiocyanates and freeze-dried strawberries as inhibitors of esophageal cancer. Toxicol Sci 52S:95–100

    Google Scholar 

  47. Carlton PS, Kresty LA, Siglin JC et al (2001) Inhibition of N-nitrosomethylbenzylamine-induced tumorigenesis in the rat esophagus by dietary freeze-dried strawberries. Carcinogenesis 22:441–446

    Article  PubMed  CAS  Google Scholar 

  48. Kresty LA, Morse MA, Morgan C et al (2001) Chemoprevention of esophageal tumorigenesis by dietary administration of lyophilized black raspberries. Cancer Res 61:6112–6119

    PubMed  CAS  Google Scholar 

  49. Aziz RM, Nines R, Rodrigo K et al (2002) The effect of freeze-dried blueberries on N-nitrosmethylbenzylamine tumorigenesis in the rat esophagus. Pharm Biol 40S:43–49

    Article  Google Scholar 

  50. Chen T, Hwang H, Rose ME et al (2006) Chemopreventive properties of black raspberries in N-nitrosomethylbenzylamine-induced rat esophageal tumorigenesis: down-regulation of cyclooxygenase-2, inducible nitric oxide synthase, and c-Jun. Cancer Res 66:2853–2859

    Article  PubMed  CAS  Google Scholar 

  51. Chen T, Rose ME, Hwang H et al (2006) Black raspberries inhibit N-nitrosomethylbenzylamine (NMBA)-induced angiogenesis in rat esophagus parallel to the suppression of COX-2 and iNOS. Carcinogenesis 27:2301–2307

    Article  PubMed  CAS  Google Scholar 

  52. Stoner GD, Aziz RM (2007) Prevention and therapy of squamous cell carcinoma of the rodent esophagus using freeze-dried black raspberries. Acta Pharmacol Sin 28:1422–1428

    Article  PubMed  CAS  Google Scholar 

  53. Lechner JF, Reen RK, Dombkowski AA et al (2008) Effects of a black raspberry diet on gene expression in the rat esophagus. Nutr Cancer 60:61–69

    Article  PubMed  Google Scholar 

  54. Stoner GD, Dombkowski AA, Reen RK et al (2008) Carcinogen-altered genes in the rat esophagus positively modulated to normal levels of expression by both black raspberries and phenylethyl isothiocyanate. Cancer Res 68:6460–6467

    Article  PubMed  CAS  Google Scholar 

  55. Wang LS, Hecht SS, Carmella SG et al (2009) Anthocyanins in black raspberries prevent esophageal tumors in rats. Cancer Prev Res 2:84–93

    Article  Google Scholar 

  56. Casto BC, Kresty LA, Kraly CL et al (2002) Chemoprevention of oral cancer by black raspberries. Anticancer Res 22:4005–4015

    PubMed  CAS  Google Scholar 

  57. Bomser JA, Singletary KW, Wallig MA et al (1999) Inhibition of TPA-induced tumor promotion in CD-1 mouse epidermis by a polyphenolic fraction from grape seeds. Cancer Lett 135:151–157

    Article  PubMed  CAS  Google Scholar 

  58. Afaq F, Saleem M, Krueger CG et al (2005) Anthocyanin- and hydrolyzable tannin-rich pomegranate fruit extract modulates MAPK and NF-kappaB pathways and inhibits skin tumorigenesis in CD-1 mice. Int J Cancer 113:423–433

    Article  PubMed  CAS  Google Scholar 

  59. Afaq F, Syed DN, Malik A et al (2007) Delphinidin, an anthocyanidin in pigmented fruits and vegetables, protects human HaCaT keratinocytes and mouse skin against UVB-mediated oxidative stress and apoptosis. J Investig Dermatol 127:222–232

    Article  PubMed  CAS  Google Scholar 

  60. Lamy S, Beaulieu E, Labbe D et al (2008) Delphinidin, a dietary anthocyanidin, inhibits platelet-derived growth factor ligand/receptor (PDGF/PDGFR) signalling. Carcinogenesis 29:1033–1041

    Article  PubMed  CAS  Google Scholar 

  61. Chen PN, Chu SC, Chiou HL et al (2005) Cyanidin 3-glucoside and peonidin 3-glucoside inhibit tumor cell growth and induce apoptosis in vitro and suppress tumor growth in vivo. Nutr Cancer 53:232–243

    Article  PubMed  CAS  Google Scholar 

  62. Koide T, Kamei H, Hashimoto Y et al (1996) Antitumor effect of hydroylsed anthocyanin from grape rinds and red rice. Cancer Biother Radiopharm 11:273–277

    Article  PubMed  CAS  Google Scholar 

  63. Cao G, Russell RM, Lischner N et al (1998) Serum antioxidant capacity is increased by consumption of strawberries, spinach, red wine or vitamin C in elderly women. J Nutr 128:2383–2390

    PubMed  CAS  Google Scholar 

  64. Mazza G, Kay CD, Cottrell T et al (2002) Absorption of anthocyanins from blueberries and serum antioxidant status in human subjects. J Agric Food Chem 50:7731–7737

    Article  PubMed  CAS  Google Scholar 

  65. Matsumoto H, Nakamura Y, Hirayama M et al (2002) Antioxidant activity of black currant anthocyanin aglycons and their glycosides measured by chemiluminescence in a neutral pH region and in human plasma. J Agric Food Chem 50:5034–5037

    Article  PubMed  CAS  Google Scholar 

  66. Kay CD, Holub BJ (2002) The effect of wild blueberry (Vaccinium angustifolium) consumption on postprandial serum antioxidant status in human subjects. Br J Nutr 88:389–398

    Article  PubMed  CAS  Google Scholar 

  67. Chung MJ, Lee SH, Sung NJ (2002) Inhibitory effect of whole strawberries, garlic juice or kale juice on endogenous formation of N-nitrosodimethylamine in humans. Cancer Lett 182:1–10

    Article  PubMed  CAS  Google Scholar 

  68. Bub A, Watzl B, Blockhaus M et al (2003) Fruit juice consumption modulates antioxidative status, immune status and DNA damage. J Nutr Biochem 14:90–98

    Article  PubMed  CAS  Google Scholar 

  69. Moller P, Loft S, Alfthan G et al (2004) Oxidative DNA damage in circulating mononuclear blood cells after ingestion of blackcurrant juice or anthocyanin-rich drink. Mutation Res 551:119–126

    PubMed  CAS  Google Scholar 

  70. Riso P, Visioli F, Gardana C et al (2005) Effects of blood orange juice intake on antioxidant bioavailability and on different markers related to oxidative stress. J Agric Food Chem 53:941–947

    Article  PubMed  CAS  Google Scholar 

  71. Weisel T, Baum M, Eisenbrand G et al (2006) An anthocyanin/polyphenolic-rich fruit juice reduces oxidative DNA damage and increases glutathione level in healthy probands. Biotechnol J 1:388–397

    Article  PubMed  CAS  Google Scholar 

  72. Duthie SJ, Jenkinson AM, Crozier A et al (2006) The effects of cranberry juice consumption on antioxidant status and biomarkers relating to heart disease and cancer in healthy human volunteers. Eur J Nutr 45:113–122

    Article  PubMed  CAS  Google Scholar 

  73. Mertens-Talcott SU, Rios J, Jilma-Stohlawetz P et al (2008) Pharmacokinetics of anthocyanins and antioxidant effects after the consumption of anthocyanin-rich acai juice and pulp (Euterpe oleracea Mart.) in human healthy volunteers. J Agric Food Chem 56:7796–7802

    Article  PubMed  CAS  Google Scholar 

  74. Jensen GS, Wu X, Patterson KM et al (2008) In vitro and in vivo anthioxidant and anti-inflammatory capacities of an antioxidant-rich fruit and berry juice blend. Results of a pilot and randomised, double-blinded, placebo-controlled crossover study. J Agric Food Chem 56:8326–8333

    Article  PubMed  CAS  Google Scholar 

  75. Mallery SR, Zwick JC, Pei P et al (2008) Topical application of a bioadhesive black raspberry gel modulates gene expression and reduces cyclooxygenase 2 protein in human premalignant oral lesions. Cancer Res 68:4945–4957

    Article  PubMed  CAS  Google Scholar 

  76. Spormann TM, Albert FW, Rath T et al (2008) Anthocyanin/polyphenolic-rich fruit juice reduces oxidative cell damage in an intervention study with patients on hemodialysis. Cancer Epidemiol Biomarkers Prev 7:3372–3380

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work in the Karlsruhe and Leicester groups is supported by a grant from the FlavoNet initiative of the Deutsche Forschungsgemeinschaft and a programme grant from Cancer Research UK.

Conflict of interest statement

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas J. Gescher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomasset, S., Teller, N., Cai, H. et al. Do anthocyanins and anthocyanidins, cancer chemopreventive pigments in the diet, merit development as potential drugs?. Cancer Chemother Pharmacol 64, 201–211 (2009). https://doi.org/10.1007/s00280-009-0976-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-009-0976-y

Keywords

Navigation