Skip to main content
Log in

Myeloid cells in atherosclerosis: initiators and decision shapers

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Chronic inflammation is the underlying pathophysiological mechanism of atherosclerosis. Prominent suspects being involved in atherosclerosis are lymphocytes, platelets, and endothelial cells. However, recent advances suggest a potent role for myeloid leukocytes, specifically monocyte subsets, polymorphonuclear leukocytes, and mast cells. These three cell types are not just rapidly recruited or already reside in the vascular wall but also initiate and perpetuate core mechanisms in plaque formation and destabilization. Dendritic cell subsets as well as endothelial and smooth muscle progenitor cells may further emerge as important regulators of atheroprogression. To stimulate further investigations about the contribution of these myeloid cells, we highlight the current mechanistic understanding by which these cells tune atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ross R (1999) Atherosclerosis–an inflammatory disease. N Engl J Med 340:115–126. doi:10.1056/NEJM199901143400207

    Article  CAS  PubMed  Google Scholar 

  2. Hansson GK, Libby P (2006) The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol 6:508–519. doi:10.1038/nri1882

    Article  CAS  PubMed  Google Scholar 

  3. Libby P (2008) The molecular mechanisms of the thrombotic complications of atherosclerosis. J Intern Med 263:517–527. doi:10.1111/j.1365-2796.2008.01965.x

    Article  CAS  PubMed  Google Scholar 

  4. Zhang Y, Cliff WJ, Schoefl GI et al (1993) Plasma protein insudation as an index of early coronary atherogenesis. Am J Pathol 143:496–506

    CAS  PubMed  Google Scholar 

  5. Maron DJ, Fazio S, Linton MF (2000) Current perspectives on statins. Circulation 101:207–213

    CAS  PubMed  Google Scholar 

  6. Weitz-Schmidt G (2002) Statins as anti-inflammatory agents. Trends Pharmacol Sci 23:482–486. doi:10.1016/S0165-6147(02) 02077-1

    Article  CAS  PubMed  Google Scholar 

  7. Ferroni P, Martini F, Cardarello CM et al (2003) Enhanced interleukin-1beta in hypercholesterolemia: effects of simvastatin and low-dose aspirin. Circulation 108:1673–1675. doi:10.1161/01.CIR.0000094732.02060.27

    Article  CAS  PubMed  Google Scholar 

  8. Schmeck B, Beermann W, N'Guessan PD et al (2008) Simvastatin reduces Chlamydophila pneumoniae-mediated histone modifications and gene expression in cultured human endothelial cells. Circ Res 102:888–895. doi:10.1161/CIRCRESAHA.107.161307

    Article  CAS  PubMed  Google Scholar 

  9. Chandrasekar B, Mummidi S, Mahimainathan L et al (2006) Interleukin-18-induced human coronary artery smooth muscle cell migration is dependent on NF-kappaB- and AP-1-mediated matrix metalloproteinase-9 expression and is inhibited by atorvastatin. J Biol Chem 281:15099–15109. doi:10.1074/jbc.M600200200

    Article  CAS  PubMed  Google Scholar 

  10. Soehnlein O, Eskafi S, Schmeisser A et al (2004) Atorvastatin induces tissue transglutaminase in human endothelial cells. Biochem Biophys Res Commun 322:105–109. doi:10.1016/j.bbrc.2004.07.087

    Article  CAS  PubMed  Google Scholar 

  11. Schönbeck U, Libby P (2004) Inflammation, immunity, and HMG-CoA reductase inhibitors: statins as antiinflammatory agents? Circulation 109:II18–II26. doi:10.1161/01.CIR.0000129505.34151.23

    Article  PubMed  CAS  Google Scholar 

  12. Schmeisser A, Soehnlein O, Illmer T et al (2004) ACE inhibition lowers angiotensin II-induced chemokine expression by reduction of NF-kappaB activity and AT1 receptor expression. Biochem Biophys Res Commun 325:532–540. doi:10.1016/j.bbrc.2004.10.059

    Article  CAS  PubMed  Google Scholar 

  13. Soehnlein O, Schmeisser A, Cicha I et al (2005) ACE inhibition lowers angiotensin-II-induced monocyte adhesion to HUVEC by reduction of p65 translocation and AT 1 expression. J Vasc Res 42:399–407. doi:10.1159/000087340

    Article  CAS  PubMed  Google Scholar 

  14. Kuvin JT, Kimmelstiel CD (1999) Infectious causes of atherosclerosis. Am Heart J 137:216–226. doi:10.1053/hj.1999.v137.92261

    Article  CAS  PubMed  Google Scholar 

  15. Epstein SE, Zhu J, Burnett MS et al (2000) Infection and atherosclerosis: potential roles of pathogen burden and molecular mimicry. Arterioscler Thromb Vasc Biol 20:1417–1420

    CAS  PubMed  Google Scholar 

  16. Heeneman S, Lutgens E, Schapira KB et al (2008) Control of atherosclerotic plaque vulnerability: insights from transgenic mice. Front Biosci 13:6289–6313. doi:10.2741/3155

    Article  CAS  PubMed  Google Scholar 

  17. Weber C, Zernecke A, Libby P (2008) The multifaceted contributions of leukocyte subsets to atherosclerosis: lessons from mouse models. Nat Rev Immunol 8:802–815. doi:10.1038/nri2415

    Article  CAS  PubMed  Google Scholar 

  18. George J (2008) Mechanisms of disease: the evolving role of regulatory T cells in atherosclerosis. Nat Clin Pract Cardiovasc Med 5:531–540. doi:10.1038/ncpcardio1279

    Article  CAS  PubMed  Google Scholar 

  19. Watanabe T, Hirata M, Yoshikawa Y et al (1985) Role of macrophages in atherosclerosis. Sequential observations of cholesterol-induced rabbit aortic lesion by the immunoperoxidase technique using monoclonal antimacrophage antibody. Lab Invest 53:80–90

    CAS  PubMed  Google Scholar 

  20. Gown AM, Tsukada T, Ross R (1986) Human atherosclerosis. II. Immunocytochemical analysis of the cellular composition of human atherosclerotic lesions. Am J Pathol 125:191–207

    CAS  PubMed  Google Scholar 

  21. Ylitalo R, Oksala O, Ylä-Herttuala S et al (1994) Effects of clodronate (dichloromethylene bisphosphonate) on the development of experimental atherosclerosis in rabbits. J Lab Clin Med 123:769–776

    CAS  PubMed  Google Scholar 

  22. Stoneman V, Braganza D, Figg N et al (2007) Monocyte/macrophage suppression in CD11b diphtheria toxin receptor transgenic mice differentially affects atherogenesis and established plaques. Circ Res 100:884–893. doi:10.1161/01.RES.0000260802.75766.00

    Article  CAS  PubMed  Google Scholar 

  23. Napoli C, D'Armiento FP, Mancini FP et al (1997) Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia. Intimal accumulation of low density lipoprotein and its oxidation precede monocyte recruitment into early atherosclerotic lesions. J Clin Invest 100:2680–2690. doi:10.1172/JCI119813

    Article  CAS  PubMed  Google Scholar 

  24. Ley K, Laudanna C, Cybulsky MI et al (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7:678–689. doi:10.1038/nri2156

    Article  CAS  PubMed  Google Scholar 

  25. Zernecke A, Shagdarsuren E, Weber C (2008) Chemokines in atherosclerosis: an update. Arterioscler Thromb Vasc Biol 28:1897–1908. doi:10.1161/ATVBAHA.107.161174

    Article  CAS  PubMed  Google Scholar 

  26. Weber C, Fraemohs L, Dejana E (2007) The role of junctional adhesion molecules in vascular inflammation. Nat Rev Immunol 7:467–477. doi:10.1038/nri2096

    Article  CAS  PubMed  Google Scholar 

  27. Johnson-Tidey RR, McGregor JL, Taylor PR et al (1994) Increase in the adhesion molecule P-selectin in endothelium overlying atherosclerotic plaques. Coexpression with intercellular adhesion molecule-1. Am J Pathol 144:952–961

    CAS  PubMed  Google Scholar 

  28. Johnson RC, Chapman SM, Dong ZM et al (1997) Absence of P-selectin delays fatty streak formation in mice. J Clin Invest 99:1037–1043. doi:10.1172/JCI119231

    Article  CAS  PubMed  Google Scholar 

  29. Katayama Y, Hidalgo A, Furie BC et al (2003) PSGL-1 participates in E-selectin-mediated progenitor homing to bone marrow: evidence for cooperation between E-selectin ligands and alpha4 integrin. Blood 102:2060–2067. doi:10.1182/blood-2003-04-1212

    Article  CAS  PubMed  Google Scholar 

  30. Katayama Y, Hidalgo A, Chang J et al (2005) CD44 is a physiological E-selectin ligand on neutrophils. J Exp Med 201:1183–1189. doi:10.1084/jem.20042014

    Article  CAS  PubMed  Google Scholar 

  31. Steegmaier M, Levinovitz A, Isenmann S et al (1995) The E-selectin-ligand ESL-1 is a variant of a receptor for fibroblast growth factor. Nature 373:615–620. doi:10.1038/373615a0

    Article  CAS  PubMed  Google Scholar 

  32. Collins RG, Velji R, Guevara NV et al (2000) P-Selectin or intercellular adhesion molecule (ICAM)-1 deficiency substantially protects against atherosclerosis in apolipoprotein E-deficient mice. J Exp Med 191:189–194. doi:10.1084/jem.191.1.189

    Article  CAS  PubMed  Google Scholar 

  33. Dong ZM, Chapman SM, Brown AA, Frenette PS, Hynes RO, Wagner DD (1998) The combined role of P- and E-selectins in atherosclerosis. J Clin Invest 102:145–152. doi:10.1172/JCI3001

    Article  CAS  PubMed  Google Scholar 

  34. Grage-Griebenow E, Flad HD, Ernst M (2001) Heterogeneity of human peripheral blood monocyte subsets. J Leukoc Biol 69:11–20

    CAS  PubMed  Google Scholar 

  35. Galkina E, Ley K (2007) Vascular adhesion molecules in atherosclerosis. Arterioscler Thromb Vasc Biol 27:2292–2301. doi:10.1161/ATVBAHA.107.149179

    Article  CAS  PubMed  Google Scholar 

  36. Patel SS, Thiagarajan R, Willerson JT et al (1998) Inhibition of alpha4 integrin and ICAM-1 markedly attenuate macrophage homing to atherosclerotic plaques in ApoE-deficient mice. Circulation 97:75–81

    CAS  PubMed  Google Scholar 

  37. Nageh MF, Sandberg ET, Marotti KR et al (1997) Deficiency of inflammatory cell adhesion molecules protects against atherosclerosis in mice. Arterioscler Thromb Vasc Biol 17:1517–1520

    CAS  PubMed  Google Scholar 

  38. Cybulsky MI, Iiyama K, Li H et al (2001) A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J Clin Invest 107:1255–1262. doi:10.1172/JCI11871

    Article  CAS  PubMed  Google Scholar 

  39. Strauss-Ayali D, Conrad SM, Mosser DM (2007) Monocyte subpopulations and their differentiation patterns during infection. J Leukoc Biol 82:244–252. doi:10.1189/jlb.0307191

    Article  CAS  PubMed  Google Scholar 

  40. Gordon S, Taylor PR (2006) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5:953–964. doi:10.1038/nri1733

    Article  CAS  Google Scholar 

  41. Geissmann F, Jung S, Littman DR (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19:71–82. doi:10.1016/S1074-7613(03) 00174-2

    Article  CAS  PubMed  Google Scholar 

  42. Weber C, Belge KU, von Hundelshausen P et al (2000) Differential chemokine receptor expression and function in human monocyte subpopulations. J Leukoc Biol 67:699–704

    CAS  PubMed  Google Scholar 

  43. Auffray C, Fogg D, Garfa M et al (2007) Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317:666–670. doi:10.1126/science.1142883

    Article  CAS  PubMed  Google Scholar 

  44. Tacke F, Alvarez D, Kaplan TJ et al (2007) Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J Clin Invest 117:185–194. doi:10.1172/JCI28549

    Article  CAS  PubMed  Google Scholar 

  45. Braunersreuther V, Zernecke A, Arnaud C et al (2007) Ccr5 but not Ccr1 deficiency reduces development of diet-induced atherosclerosis in mice. Arterioscler Thromb Vasc Biol 27:373–379. doi:10.1161/01.ATV.0000253886.44609.ae

    Article  CAS  PubMed  Google Scholar 

  46. Combadière C, Potteaux S, Rodero M et al (2008) Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice. Circulation 117:1649–1657. doi:10.1161/CIRCULATIONAHA.107.745091

    Article  PubMed  CAS  Google Scholar 

  47. Lesnik P, Haskell CA, Charo IF (2003) Decreased atherosclerosis in CX3CR1-/- mice reveals a role for fractalkine in atherogenesis. J Clin Invest 111:333–340

    CAS  PubMed  Google Scholar 

  48. Combadière C, Potteaux S, Gao JL et al (2003) Decreased atherosclerotic lesion formation in CX3CR1/apolipoprotein E double knockout mice. Circulation 107:1009–1016. doi:10.1161/01.CIR.0000057548.68243.42

    Article  PubMed  CAS  Google Scholar 

  49. Huo Y, Ley K (2001) Adhesion molecules and atherogenesis. Acta Physiol Scand 173:35–43. doi:10.1046/j.1365-201X.2001.00882.x

    Article  CAS  PubMed  Google Scholar 

  50. An G, Wang H, Tang R et al (2008) P-selectin glycoprotein ligand-1 is highly expressed on Ly-6Chi monocytes and a major determinant for Ly-6Chi monocyte recruitment to sites of atherosclerosis in mice. Circulation 117:3227–3237. doi:10.1161/CIRCULATIONAHA.108.771048

    Article  CAS  PubMed  Google Scholar 

  51. Swirski FK, Libby P, Aikawa E et al (2007) Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J Clin Invest 117:195–205. doi:10.1172/JCI29950

    Article  CAS  PubMed  Google Scholar 

  52. Landsman L, Bar-On L, Zernecke A et al (2009) CX3CR1 is required for monocyte homeostasis and atherogenesis by promoting cell survival. Blood 113:963–972. doi:10.1182/blood-2008-07-170787

    Article  CAS  PubMed  Google Scholar 

  53. Moore KJ, Freeman MW (2006) Scavenger receptors in atherosclerosis: beyond lipid uptake. Arterioscler Thromb Vasc Biol 26:1702–1711. doi:10.1161/01.ATV.0000229218.97976.43

    Article  CAS  PubMed  Google Scholar 

  54. Babaev VR, Gleaves LA, Carter KJ et al (2000) Reduced atherosclerotic lesions in mice deficient for total or macrophage-specific expression of scavenger receptor-A. Arterioscler Thromb Vasc Biol 20:2593–2599

    CAS  PubMed  Google Scholar 

  55. Draude G, von Hundelshausen P, Frankenberger M et al (1999) Distinct scavenger receptor expression and function in the human CD14(+)/CD16(+) monocyte subset. Am J Physiol 276:H1144–H1149

    CAS  PubMed  Google Scholar 

  56. Nahrendorf M, Swirski FK, Aikawa E et al (2007) The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 204:3037–3047. doi:10.1084/jem.20070885

    Article  CAS  PubMed  Google Scholar 

  57. Trillo AA (1982) The cell population of aortic fatty streaks in African green monkeys with special reference to granulocytic cells. An ultrastructural study. Atherosclerosis 43:259–275. doi:10.1016/0021-9150(82) 90027-2

    Article  CAS  PubMed  Google Scholar 

  58. Kawaguchi H, Mori T, Kawano T et al (1996) Band neutrophil count and the presence and severity of coronary atherosclerosis. Am Heart J 132:9–12. doi:10.1016/S0002-8703(96) 90384-1

    Article  CAS  PubMed  Google Scholar 

  59. Sweetnam PM, Thomas HF, Yarnell JW et al (1997) Total and differential leukocyte counts as predictors of ischemic heart disease: the Caerphilly and Speedwell studies. Am J Epidemiol 145:416–421

    CAS  PubMed  Google Scholar 

  60. Naruko T, Ueda M, Haze K et al (2002) Neutrophil infiltration of culprit lesions in acute coronary syndromes. Circulation 106:2894–2900. doi:10.1161/01.CIR.0000042674.89762.20

    Article  PubMed  Google Scholar 

  61. Zernecke A, Bot I, Djalali-Talab Y et al (2008) Protective role of CXC receptor 4/CXC ligand 12 unveils the importance of neutrophils in atherosclerosis. Circ Res 102:209–217. doi:10.1161/CIRCRESAHA.107.160697

    Article  CAS  PubMed  Google Scholar 

  62. Eriksson EE, Xie X, Werr J et al (2001) Direct viewing of atherosclerosis in vivo: plaque invasion by leukocytes is initiated by the endothelial selectins. FASEB J 15:1149–1157. doi:10.1096/fj.00-0537com

    Article  CAS  PubMed  Google Scholar 

  63. Tabas I (2005) Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis: the importance of lesion stage and phagocytic efficiency. Arterioscler Thromb Vasc Biol 25:2255–2264. doi:10.1161/01.ATV.0000184783.04864.9f

    Article  CAS  PubMed  Google Scholar 

  64. Galligan C, Yoshimura T (2003) Phenotypic and functional changes of cytokine-activated neutrophils. Chem Immunol Allergy 83:24–44. doi:10.1159/000071555

    Article  CAS  PubMed  Google Scholar 

  65. Rotzius P, Soehnlein O, Kenne E et al (2009) ApoE(−/−)/lysozyme M(EGFP/EGFP) mice as a versatile model to study monocyte and neutrophil trafficking in atherosclerosis. Atherosclerosis 202:111–118. doi:10.1016/j.atherosclerosis.2008.04.009

    Article  CAS  PubMed  Google Scholar 

  66. Nathan C (2006) Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol 6:173–182. doi:10.1038/nri1785

    Article  CAS  PubMed  Google Scholar 

  67. Oppenheim JJ, Yang D (2005) Alarmins: chemotactic activators of immune responses. Curr Opin Immunol 17:359–365. doi:10.1016/j.coi.2005.06.002

    Article  CAS  PubMed  Google Scholar 

  68. Kai-Larsen Y, Agerberth B (2008) The role of the multifunctional peptide LL-37 in host defense. Front Biosci 13:3760–3767. doi:10.2741/2964

    Article  CAS  PubMed  Google Scholar 

  69. Yang D, Biragyn A, Kwak LW et al (2002) Mammalian defensins in immunity: more than just microbicidal. Trends Immunol 23:291–296. doi:10.1016/S1471-4906(02) 02246-9

    Article  CAS  PubMed  Google Scholar 

  70. Soehnlein O, Lindbom L (2008) Neutrophil-derived azurocidin alarms the immune system. J Leukoc Biol. doi:10.1189/jlb.0808495

  71. Chertov O, Yang D, Howard OM et al (2000) Leukocyte granule proteins mobilize innate host defenses and adaptive immune responses. Immunol Rev 177:68–78. doi:10.1034/j.1600-065X.2000.17702.x

    Article  CAS  PubMed  Google Scholar 

  72. Lee TD, Gonzalez ML, Kumar P et al (2002) CAP37, a novel inflammatory mediator: its expression in endothelial cells and localization to atherosclerotic lesions. Am J Pathol 160:841–848

    CAS  PubMed  Google Scholar 

  73. Soehnlein O, Xie X, Ulbrich H et al (2005) Neutrophil-derived heparin-binding protein (HBP/CAP37) deposited on endothelium enhances monocyte arrest under flow conditions. J Immunol 174:6399–6405

    CAS  PubMed  Google Scholar 

  74. von Hundelshausen P, Weber KS, Huo Y et al (2001) RANTES deposition by platelets triggers monocyte arrest on inflamed and atherosclerotic endothelium. Circulation 103:1772–1777

    Google Scholar 

  75. Soehnlein O, Zernecke A, Eriksson EE et al (2008) Neutrophil secretion products pave the way for inflammatory monocytes. Blood 112:1461–1471. doi:10.1182/blood-2008-02-139634

    Article  CAS  PubMed  Google Scholar 

  76. Gautam N, Olofsson AM, Herwald H et al (2001) Heparin-binding protein (HBP/CAP37): a missing link in neutrophil-evoked alteration of vascular permeability. Nat Med. 7:1123–1127

    Article  CAS  PubMed  Google Scholar 

  77. Soehnlein O, Oehmcke S, Ma X et al (2008) Neutrophil degranulation mediates severe lung damage triggered by streptococcal M1 protein. Eur Respir J 32:405–412. doi:10.1183/09031936.00173207

    Article  CAS  PubMed  Google Scholar 

  78. Di Gennaro A, Kenne E, Wan M, et al (2009) Leukotrien B4-induced changes in vascular permeability are mediated by neutrophil release of heparin-binindg protein (HBP/CAP37/azurocidin). FASEB doi:0: fj.08-121277v1

  79. Soehnlein O, Kai-Larsen Y, Frithiof R et al (2008) Neutrophil primary granule proteins HBP and HNP1–3 boost bacterial phagocytosis by human and murine macrophages. J Clin Invest 118:3491–3502. doi:10.1172/JCI35740

    Article  CAS  PubMed  Google Scholar 

  80. Påhlman LI, Mörgelin M, Eckert J et al (2006) Streptococcal M protein: a multipotent and powerful inducer of inflammation. J Immunol 177:1221–1228

    PubMed  Google Scholar 

  81. Cai TQ, Wright SD (1996) Human leukocyte elastase is an endogenous ligand for the integrin CR3 (CD11b/CD18, Mac-1, alpha M beta 2) and modulates polymorphonuclear leukocyte adhesion. J Exp Med 184:1213–1223. doi:10.1084/jem.184.4.1213

    Article  CAS  PubMed  Google Scholar 

  82. Ribeiro-Gomes FL, Moniz-de-Souza MC, Alexandre-Moreira MS et al (2007) Neutrophils activate macrophages for intracellular killing of Leishmania major through recruitment of TLR4 by neutrophil elastase. J Immunol 179:3988–3994

    CAS  PubMed  Google Scholar 

  83. Li T, Wang H, He S (2006) Induction of interleukin-6 release from monocytes by serine proteinases and its potential mechanisms. Scand J Immunol 64:10–16. doi:10.1111/j.1365-3083.2006.01772.x

    Article  CAS  PubMed  Google Scholar 

  84. Michelsen KS, Wong MH, Shah PK et al (2004) Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc Natl Acad Sci USA 101:10679–10684. doi:10.1073/pnas.0403249101

    Article  CAS  PubMed  Google Scholar 

  85. Luttun A, Lutgens E, Manderveld A et al (2004) Loss of matrix metalloproteinase-9 or matrix metalloproteinase-12 protects apolipoprotein E-deficient mice against atherosclerotic media destruction but differentially affects plaque growth. Circulation 109:1408–1414. doi:10.1161/01.CIR.0000121728.14930.DE

    Article  CAS  PubMed  Google Scholar 

  86. Eliason JL, Hannawa KK, Ailawadi G et al (2005) Neutrophil depletion inhibits experimental abdominal aortic aneurysm formation. Circulation 112:232–240. doi:10.1161/CIRCULATIONAHA.104.517391

    Article  CAS  PubMed  Google Scholar 

  87. Pagano MB, Bartoli MA, Ennis TL et al (2007) Critical role of dipeptidyl peptidase I in neutrophil recruitment during the development of experimental abdominal aortic aneurysms. Proc Natl Acad Sci USA 104:2855–2860. doi:10.1073/pnas.0606091104

    Article  CAS  PubMed  Google Scholar 

  88. Adkison AM, Raptis SZ, Kelley DG et al (2002) Dipeptidyl peptidase I activates neutrophil-derived serine proteases and regulates the development of acute experimental arthritis. J Clin Invest 109:363–371

    CAS  PubMed  Google Scholar 

  89. Nicholls SJ, Hazen SL (2005) Myeloperoxidase and cardiovascular disease. Arterioscler Thromb Vasc Biol 25:1102–1111. doi:10.1161/01.ATV.0000163262.83456.6d

    Article  CAS  PubMed  Google Scholar 

  90. Sugiyama S, Kugiyama K, Aikawa M et al (2004) Hypochlorous acid, a macrophage product, induces endothelial apoptosis and tissue factor expression: involvement of myeloperoxidase-mediated oxidant in plaque erosion and thrombogenesis. Arterioscler Thromb Vasc Biol 24:1309–1314. doi:10.1161/01.ATV.0000131784.50633.4f

    Article  CAS  PubMed  Google Scholar 

  91. Brennan ML, Penn MS, Van Lente F et al (2003) Prognostic value of myeloperoxidase in patients with chest pain. N Engl J Med 349:1595–1604. doi:10.1056/NEJMoa035003

    Article  CAS  PubMed  Google Scholar 

  92. Steinberg D (2008) The LDL modification hypothesis of atherogenesis: an update. J Lipid Res (in press)

  93. Bdeir K, Cane W, Canziani G et al (1999) Defensin promotes the binding of lipoprotein(a) to vascular matrix. Blood 94:2007–2019

    CAS  PubMed  Google Scholar 

  94. Higazi AA, Lavi E, Bdeir K et al (1997) Defensin stimulates the binding of lipoprotein (a) to human vascular endothelial and smooth muscle cells. Blood 89:4290–4298

    CAS  PubMed  Google Scholar 

  95. Bobryshev YV (2006) Monocyte recruitment and foam cell formation in atherosclerosis. Micron 37:208–222. doi:10.1016/j.micron.2005.10.007

    Article  CAS  PubMed  Google Scholar 

  96. Cheng J, Cui R, Chen CH et al (2007) Oxidized low-density lipoprotein stimulates p53-dependent activation of proapoptotic Bax leading to apoptosis of differentiated endothelial progenitor cells. Endocrinology 148:2085–2094. doi:10.1210/en.2006-1709

    Article  CAS  PubMed  Google Scholar 

  97. Harrison D, Griendling KK, Landmesser U et al (2003) Role of oxidative stress in atherosclerosis. Am J Cardiol 91:7A–11A. doi:10.1016/S0002-9149(02) 03144-2

    Article  CAS  PubMed  Google Scholar 

  98. Tanigawa T, Kitamura A, Yamagishi K et al (2003) Relationships of differential leukocyte and lymphocyte subpopulations with carotid atherosclerosis in elderly men. J Clin Immunol 23:469–476. doi:10.1023/B:JOCI.0000010423.65719.e5

    Article  PubMed  Google Scholar 

  99. Rittersma SZ, Meuwissen M, van der Loos CM et al (2006) Eosinophilic infiltration in restenotic tissue following coronary stent implantation. Atherosclerosis 184:157–162. doi:10.1016/j.atherosclerosis.2005.03.049

    Article  CAS  PubMed  Google Scholar 

  100. Thonnard-Neumann E, Fox RR, Taylor WL (1970) Basophilic leukocytes in the hyperlipemic rabbit. Blut 20:214–221. doi:10.1007/BF01632292

    Article  CAS  PubMed  Google Scholar 

  101. Bischoff SC, Krieger M, Brunner T et al (1992) Monocyte chemotactic protein 1 is a potent activator of human basophils. J Exp Med 175:1271–1275. doi:10.1084/jem.175.5.1271

    Article  CAS  PubMed  Google Scholar 

  102. Agis H, Willheim M, Sperr WR et al (1993) Monocytes do not make mast cells when cultured in the presence of SCF. Characterization of the circulating mast cell progenitor as a c-kit+, CD34+, Ly−, CD14−, CD17−, colony-forming cell. J Immunol 151:4221–4227

    CAS  PubMed  Google Scholar 

  103. Födinger M, Fritsch G, Winkler K et al (1994) Origin of human mast cells: development from transplanted hematopoietic stem cells after allogeneic bone marrow transplantation. Blood 84:2954–2959

    PubMed  Google Scholar 

  104. Kirshenbaum AS, Goff JP, Semere T et al (1999) Demonstration that human mast cells arise from a progenitor cell population that is CD34(+), c-kit(+), and expresses aminopeptidase N (CD13). Blood 94:2333–2342

    CAS  PubMed  Google Scholar 

  105. Galli SJ, Nakae S, Tsai M (2005) Mast cells in the development of adaptive immune responses. Nat Immunol 6:135–142. doi:10.1038/ni1158

    Article  CAS  PubMed  Google Scholar 

  106. Kalesnikoff J, Galli SJ (2008) New developments in mast cell biology. Nat Immunol 9:1215–1223. doi:10.1038/ni.f.216

    Article  CAS  PubMed  Google Scholar 

  107. Constantinides P (1953) Mast cells and susceptibility to experimental atherosclerosis. Science 117:505–506. doi:10.1126/science.117.3045.505

    Article  CAS  PubMed  Google Scholar 

  108. Kovanen PT (2007) Mast cells and degradation of pericellular and extracellular matrices: potential contributions to erosion, rupture and intraplaque haemorrhage of atherosclerotic plaques. Biochem Soc Trans 35:857–861. doi:10.1042/BST0350857

    Article  CAS  PubMed  Google Scholar 

  109. Bot I, de Jager SC, Zernecke A et al (2007) Perivascular mast cells promote atherogenesis and induce plaque destabilization in apolipoprotein E-deficient mice. Circulation 115:2516–2525. doi:10.1161/CIRCULATIONAHA.106.660472

    Article  CAS  PubMed  Google Scholar 

  110. Sun J, Sukhova GK, Wolters PJ et al (2007) Mast cells promote atherosclerosis by releasing proinflammatory cytokines. Nat Med 13:719–724. doi:10.1038/nm1601

    Article  CAS  PubMed  Google Scholar 

  111. Sun J, Sukhova GK, Yang M et al (2007) Mast cells modulate the pathogenesis of elastase-induced abdominal aortic aneurysms in mice. J Clin Invest 117:3359–3368. doi:10.1172/JCI31311

    Article  CAS  PubMed  Google Scholar 

  112. Spanbroek R, Grabner R, Lotzer K et al (2003) Expanding expression of the 5-lipoxygenase pathway within the arterial wall during human atherogenesis. Proc Natl Acad Sci USA 100:1238–1243. doi:10.1073/pnas.242716099

    Article  CAS  PubMed  Google Scholar 

  113. Qiu H, Gabrielsen A, Agardh HE et al (2006) Expression of 5-lipoxygenase and leukotriene A4 hydrolase in human atherosclerotic lesions correlates with symptoms of plaque instability. Proc Natl Acad Sci USA 103:8161–8166. doi:10.1073/pnas.0602414103

    Article  CAS  PubMed  Google Scholar 

  114. Dwyer JH, Allayee H, Dwyer KM et al (2004) Arachidonate 5-lipoxygenase promoter genotype, dietary arachidonic acid, and atherosclerosis. N Engl J Med 350:29–37. doi:10.1056/NEJMoa025079

    Article  CAS  PubMed  Google Scholar 

  115. Helgadottir A, Manolescu A, Thorleifsson G et al (2004) The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke. Nat Genet 36:233–239. doi:10.1038/ng1311

    Article  CAS  PubMed  Google Scholar 

  116. Helgadottir A, Manolescu A, Helgason A et al (2006) A variant of the gene encoding leukotriene A4 hydrolase confers ethnicity-specific risk of myocardial infarction. Nat Genet 38:68–74. doi:10.1038/ng1692

    Article  CAS  PubMed  Google Scholar 

  117. Mehrabian M, Allayee H, Wong J et al (2002) Identification of 5-lipoxygenase as a major gene contributing to atherosclerosis susceptibility in mice. Circ Res 91:120–126. doi:10.1161/01.RES.0000028008.99774.7F

    Article  CAS  PubMed  Google Scholar 

  118. Zhao L, Moos MP, Gräbner R et al (2004) The 5-lipoxygenase pathway promotes pathogenesis of hyperlipidemia-dependent aortic aneurysm. Nat Med 10:966–973. doi:10.1038/nm1099

    Article  CAS  PubMed  Google Scholar 

  119. Ma H, Kovanen PT (1997) Degranulation of cutaneous mast cells induces transendothelial transport and local accumulation of plasma LDL in rat skin in vivo. J Lipid Res 38:1877–1887

    CAS  PubMed  Google Scholar 

  120. Lindstedt KA, Kokkonen JO, Kovanen PT (1992) Soluble heparin proteoglycans released from stimulated mast cells induce uptake of low density lipoproteins by macrophages via scavenger receptor-mediated phagocytosis. J Lipid Res 33:65–75

    CAS  PubMed  Google Scholar 

  121. Johnson JL, Jackson CL, Angelini GD et al (1998) Activation of matrix-degrading metalloproteinases by mast cell proteases in atherosclerotic plaques. Arterioscler Thromb Vasc Biol 18:1707–1715

    CAS  PubMed  Google Scholar 

  122. Caughey GH (2007) Mast cell tryptases and chymases in inflammation and host defense. Immunol Rev 217:141–154. doi:10.1111/j.1600-065X.2007.00509.x

    Article  CAS  PubMed  Google Scholar 

  123. Miyazaki M, Takai S, Jin D et al (2006) Pathological roles of angiotensin II produced by mast cell chymase and the effects of chymase inhibition in animal models. Pharmacol Ther 112:668–676. doi:10.1016/j.pharmthera.2006.05.008

    Article  CAS  PubMed  Google Scholar 

  124. Millonig G, Niederegger H, Rabl W et al (2001) Network of vascular-associated dendritic cells in intima of healthy young individuals. Arterioscler Thromb Vasc Biol 21:503–508

    CAS  PubMed  Google Scholar 

  125. Liu P, Yu YR, Spencer JA et al (2008) CX3CR1 deficiency impairs dendritic cell accumulation in arterial intima and reduces atherosclerotic burden. Arterioscler Thromb Vasc Biol 28:243–250. doi:10.1161/ATVBAHA.107.158675

    Article  CAS  PubMed  Google Scholar 

  126. Bobryshev YV (2005) Dendritic cells in atherosclerosis: current status of the problem and clinical relevance. Eur Heart J 26:1700–1704. doi:10.1093/eurheartj/ehi282

    Article  PubMed  Google Scholar 

  127. Yilmaz A, Lochno M, Traeg F et al (2004) Emergence of dendritic cells in rupture-prone regions of vulnerable carotid plaques. Atherosclerosis 176:101–110. doi:10.1016/j.atherosclerosis.2004.04.027

    Article  CAS  PubMed  Google Scholar 

  128. Yilmaz A, Reiss C, Tantawi O et al (2004) HMG-CoA reductase inhibitors suppress maturation of human dendritic cells: new implications for atherosclerosis. Atherosclerosis 172:85–93. doi:10.1016/j.atherosclerosis.2003.10.002

    Article  CAS  PubMed  Google Scholar 

  129. Yilmaz A, Reiss C, Weng A et al (2006) Differential effects of statins on relevant functions of human monocyte-derived dendritic cells. J Leukoc Biol 79:529–538. doi:10.1189/jlb.0205064

    Article  CAS  PubMed  Google Scholar 

  130. Shaposhnik Z, Wang X, Weinstein M et al (2007) Granulocyte macrophage colony-stimulating factor regulates dendritic cell content of atherosclerotic lesions. Arterioscler Thromb Vasc Biol 27:621–627. doi:10.1161/01.ATV.0000254673.55431.e6

    Article  CAS  PubMed  Google Scholar 

  131. Zaguri R, Verbovetski I, Atallah M et al (2007) ‘Danger’ effect of low-density lipoprotein (LDL) and oxidized LDL on human immature dendritic cells. Clin Exp Immunol 149:543–552

    CAS  PubMed  Google Scholar 

  132. Katou F, Ohtani H, Nakayama T et al (2003) Differential expression of CCL19 by DC-Lamp + mature dendritic cells in human lymph node versus chronically inflamed skin. J Pathol 199:98–106. doi:10.1002/path.1255

    Article  PubMed  CAS  Google Scholar 

  133. Lebre MC, Burwell T, Vieira PL et al (2005) Differential expression of inflammatory chemokines by Th1- and Th2-cell promoting dendritic cells: a role for different mature dendritic cell populations in attracting appropriate effector cells to peripheral sites of inflammation. Immunol Cell Biol 83:525–535. doi:10.1111/j.1440-1711.2005.01365.x

    Article  CAS  PubMed  Google Scholar 

  134. Tang HL, Cyster JG (1999) Chemokine up-regulation and activated T cell attraction by maturing dendritic cells. Science 284:819–822. doi:10.1126/science.284.5415.819

    Article  CAS  PubMed  Google Scholar 

  135. Colonna M, Trinchieri G, Liu YJ (2004) Plasmacytoid dendritic cells in immunity. Nat Immunol 5:1219–1226. doi:10.1038/ni1141

    Article  CAS  PubMed  Google Scholar 

  136. Niessner A, Sato K, Chaikof EL et al (2006) Pathogen-sensing plasmacytoid dendritic cells stimulate cytotoxic T-cell function in the atherosclerotic plaque through interferon-alpha. Circulation 114:2482–2489. doi:10.1161/CIRCULATIONAHA.106.642801

    Article  CAS  PubMed  Google Scholar 

  137. Asahara T, Murohara T, Sullivan A et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967. doi:10.1126/science.275.5302.964

    Article  CAS  PubMed  Google Scholar 

  138. Hristov M, Weber C (2008) Endothelial progenitor cells in vascular repair and remodeling. Pharmacol Res 58:148–151. doi:10.1016/j.phrs.2008.07.008

    Article  CAS  PubMed  Google Scholar 

  139. Hristov M, Weber C (2008) Ambivalence of progenitor cells in vascular repair and plaque stability. Curr Opin Lipidol 19:491–497. doi:10.1097/MOL.0b013e32830dfe33

    Article  CAS  PubMed  Google Scholar 

  140. Schmeisser A, Garlichs CD, Zhang H et al (2001) Monocytes coexpress endothelial and macrophagocytic lineage markers and form cord-like structures in Matrigel under angiogenic conditions. Cardiovasc Res 49:671–680. doi:10.1016/S0008-6363(00) 00270-4

    Article  CAS  PubMed  Google Scholar 

  141. Hristov M, Zernecke A, Liehn EA et al (2007) Regulation of endothelial progenitor cell homing after arterial injury. Thromb Haemost 98:274–277

    CAS  PubMed  Google Scholar 

  142. Schmidt-Lucke C, Rössig L, Fichtlscherer S et al (2005) Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation 111:2981–2987. doi:10.1161/CIRCULATIONAHA.104.504340

    Article  PubMed  Google Scholar 

  143. Hill JM, Zalos G, Halcox JP et al (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348:593–600. doi:10.1056/NEJMoa022287

    Article  PubMed  Google Scholar 

  144. George J, Afek A, Abashidze A et al (2005) Transfer of endothelial progenitor and bone marrow cells influences atherosclerotic plaque size and composition in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol 25:2636–2641. doi:10.1161/01.ATV.0000188554.49745.9e

    Article  CAS  PubMed  Google Scholar 

  145. Hristov M, Zernecke A, Bidzhekov K et al (2007) Importance of CXC chemokine receptor 2 in the homing of human peripheral blood endothelial progenitor cells to sites of arterial injury. Circ Res 100:590–597. doi:10.1161/01.RES.0000259043.42571.68

    Article  CAS  PubMed  Google Scholar 

  146. Zernecke A, Schober A, Bot I et al (2005) SDF-1alpha/CXCR4 axis is instrumental in neointimal hyperplasia and recruitment of smooth muscle progenitor cells. Circ Res 96:784–791. doi:10.1161/01.RES.0000162100.52009.38

    Article  CAS  PubMed  Google Scholar 

  147. Simper D, Stalboerger PG, Panetta CJ et al (2002) Smooth muscle progenitor cells in human blood. Circulation 106:1199–1204. doi:10.1161/01.CIR.0000031525.61826.A8

    Article  CAS  PubMed  Google Scholar 

  148. Sugiyama S, Kugiyama K, Nakamura S et al (2006) Characterization of smooth muscle-like cells in circulating human peripheral blood. Atherosclerosis 187:351–362. doi:10.1016/j.atherosclerosis.2005.09.014

    Article  CAS  PubMed  Google Scholar 

  149. Bentzon JF, Sondergaard CS, Kassem M et al (2007) Smooth muscle cells healing atherosclerotic plaque disruptions are of local, not blood, origin in apolipoprotein E knockout mice. Circulation 116:2053–2061. doi:10.1161/CIRCULATIONAHA.107.722355

    Article  CAS  PubMed  Google Scholar 

  150. Zoll J, Fontaine V, Gourdy P et al (2008) Role of human smooth muscle cell progenitors in atherosclerotic plaque development and composition. Cardiovasc Res 77:471–480. doi:10.1093/cvr/cvm034

    Article  CAS  PubMed  Google Scholar 

  151. Hillebrands JL, Klatter FA, van den Hurk BM et al (2001) Origin of neointimal endothelium and alpha-actin-positive smooth muscle cells in transplant arteriosclerosis. J Clin Invest 107:1411–1422. doi:10.1172/JCI10233

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (SO876/1-1, FOR809, WE1913/10-1) and the Interdisciplinary Centre for Clinical Research “BIOMAT” within the Faculty of Medicine at the RWTH Aachen University (VV-B113).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Oliver Soehnlein or Christian Weber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soehnlein, O., Weber, C. Myeloid cells in atherosclerosis: initiators and decision shapers. Semin Immunopathol 31, 35–47 (2009). https://doi.org/10.1007/s00281-009-0141-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-009-0141-z

Keywords

Navigation