Skip to main content

Advertisement

Log in

Molecular basis of Staphylococcus epidermidis infections

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Staphylococcus epidermidis is the most important member of the coagulase-negative staphylococci and one of the most abundant colonizers of human skin. While for a long time regarded as innocuous, it has been identified as the most frequent cause of device-related infections occurring in the hospital setting and is therefore now recognized as an important opportunistic pathogen. S. epidermidis produces a series of molecules that provide protection from host defenses. Specifically, many proteins and exopolymers, such as the exopolysaccharide PIA, contribute to biofilm formation and inhibit phagocytosis and the activity of human antimicrobial peptides. Furthermore, recent research has identified a family of pro-inflammatory peptides in S. epidermidis, the phenol-soluble modulins (PSMs), which have multiple functions in immune evasion and biofilm development, and may be cytolytic. However, in accordance with the relatively benign relationship that S. epidermidis has with its host, production of aggressive members of the PSM family is kept at a low level. Interestingly, in contrast to S. aureus with its large arsenal of toxins developed for causing infection in the human host, most if not all “virulence factors” of S. epidermidis appear to have original functions in the commensal lifestyle of this bacterium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kloos WE, Musselwhite MS (1975) Distribution and persistence of Staphylococcus and Micrococcus species and other aerobic bacteria on human skin. Appl Microbiol 30(3):381–385

    PubMed  CAS  Google Scholar 

  2. Grice EA, Segre JA (2011) The skin microbiome. Nat Rev Microbiol 9(4):244–253. doi:10.1038/nrmicro2537

    PubMed  CAS  Google Scholar 

  3. Kloos W, Schleifer KH (1986) Staphylococcus. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology. Williams & Wilkins, Baltimore

  4. Rogers KL, Fey PD, Rupp ME (2009) Coagulase-negative staphylococcal infections. Infect Dis Clin North Am 23(1):73–98

    PubMed  Google Scholar 

  5. Etienne J, Pangon B, Leport C, Wolff M, Clair B, Perronne C, Brun Y, Bure A (1989) Staphylococcus lugdunensis endocarditis. Lancet 1(8634):390

    PubMed  CAS  Google Scholar 

  6. Zinkernagel AS, Zinkernagel MS, Elzi MV, Genoni M, Gubler J, Zbinden R, Mueller NJ (2008) Significance of Staphylococcus lugdunensis bacteremia: report of 28 cases and review of the literature. Infection 36(4):314–321

    PubMed  CAS  Google Scholar 

  7. Lina G, Etienne J, Vandenesch F (2000) Biology and pathogenicity of staphylococci other than Staphylococcus aureus and Staphylococcus epidermidis. In: Fischetti VA, Novick RP, Ferretti JJ, Portnoy DA, Rood JI (eds) Gram-positive pathogens. ASM, Washington, DC

    Google Scholar 

  8. O’Grady NP, Alexander M, Dellinger EP, Gerberding JL, Heard SO, Maki DG, Masur H, McCormick RD, Mermel LA, Pearson ML, Raad II, Randolph A, Weinstein RA (2002) Guidelines for the prevention of intravascular catheter-related infections. Centers for Disease Control and Prevention. MMWR Recomm Rep 51(RR-10):1–29

    PubMed  Google Scholar 

  9. Raad I, Hanna H, Maki D (2007) Intravascular catheter-related infections: advances in diagnosis, prevention, and management. Lancet Infect Dis 7(10):645–657

    PubMed  Google Scholar 

  10. Wang A, Athan E, Pappas PA, Fowler VG Jr, Olaison L, Pare C, Almirante B, Munoz P, Rizzi M, Naber C, Logar M, Tattevin P, Iarussi DL, Selton-Suty C, Jones SB, Casabe J, Morris A, Corey GR, Cabell CH (2007) Contemporary clinical profile and outcome of prosthetic valve endocarditis. Jama 297(12):1354–1361

    PubMed  CAS  Google Scholar 

  11. Cheung GY, Otto M (2010) Understanding the significance of Staphylococcus epidermidis bacteremia in babies and children. Curr Opin Infect Dis. doi:10.1097/QCO.0b013e328337fecb

  12. Anday EK, Talbot GH (1985) Coagulase-negative Staphylococcus bacteremia—a rising threat in the newborn infant. Ann Clin Lab Sci 15(3):246–251

    PubMed  CAS  Google Scholar 

  13. Diekema DJ, Pfaller MA, Schmitz FJ, Smayevsky J, Bell J, Jones RN, Beach M (2001) Survey of infections due to Staphylococcus species: frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, Europe, and the Western Pacific region for the SENTRY Antimicrobial Surveillance Program, 1997–1999. Clin Infect Dis 32(Suppl 2):S114–S132

    PubMed  CAS  Google Scholar 

  14. Chambers HF, Hartman BJ, Tomasz A (1985) Increased amounts of a novel penicillin-binding protein in a strain of methicillin-resistant Staphylococcus aureus exposed to nafcillin. J Clin Invest 76(1):325–331

    PubMed  CAS  Google Scholar 

  15. Tomasz A, Nachman S, Leaf H (1991) Stable classes of phenotypic expression in methicillin-resistant clinical isolates of staphylococci. Antimicrob Agents Chemother 35(1):124–129

    PubMed  CAS  Google Scholar 

  16. Jones RN (2006) Microbiological features of vancomycin in the 21st century: minimum inhibitory concentration creep, bactericidal/static activity, and applied breakpoints to predict clinical outcomes or detect resistant strains. Clin Infect Dis 42(Suppl 1):S13–S24

    PubMed  CAS  Google Scholar 

  17. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    PubMed  CAS  Google Scholar 

  18. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284(5418):1318–1322

    PubMed  CAS  Google Scholar 

  19. Leid JG, Shirtliff ME, Costerton JW, Stoodley AP (2002) Human leukocytes adhere to, penetrate, and respond to Staphylococcus aureus biofilms. Infect Immun 70(11):6339–6345

    PubMed  CAS  Google Scholar 

  20. Thurlow LR, Hanke ML, Fritz T, Angle A, Aldrich A, Williams SH, Engebretsen IL, Bayles KW, Horswill AR, Kielian T (2011) Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. J Immunol 186(11):6585–6596

    PubMed  CAS  Google Scholar 

  21. Mah TF, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9(1):34–39

    PubMed  CAS  Google Scholar 

  22. Walters MC 3rd, Roe F, Bugnicourt A, Franklin MJ, Stewart PS (2003) Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother 47(1):317–323

    PubMed  CAS  Google Scholar 

  23. Leite B, Gomes F, Teixeira P, Souza C, Pizzolitto E, Oliveira R (2011) In vitro activity of daptomycin, linezolid and rifampicin on Staphylococcus epidermidis biofilms. Curr Microbiol 63(3):313–317

    PubMed  CAS  Google Scholar 

  24. Dunne WM Jr, Mason EO Jr, Kaplan SL (1993) Diffusion of rifampin and vancomycin through a Staphylococcus epidermidis biofilm. Antimicrob Agents Chemother 37(12):2522–2526

    PubMed  CAS  Google Scholar 

  25. Keren I, Kaldalu N, Spoering A, Wang Y, Lewis K (2004) Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett 230(1):13–18

    PubMed  CAS  Google Scholar 

  26. Shapiro JA, Nguyen VL, Chamberlain NR (2011) Evidence for persisters in Staphylococcus epidermidis RP62a planktonic cultures and biofilms. J Med Microbiol 60(Pt 7):950–960

    PubMed  CAS  Google Scholar 

  27. Yao Y, Sturdevant DE, Otto M (2005) Genomewide analysis of gene expression in Staphylococcus epidermidis biofilms: insights into the pathophysiology of S. epidermidis biofilms and the role of phenol-soluble modulins in formation of biofilms. J Infect Dis 191(2):289–298

    PubMed  CAS  Google Scholar 

  28. Rodgers J, Phillips F, Olliff C (1994) The effects of extracellular slime from Staphylococcus epidermidis on phagocytic ingestion and killing. FEMS Immunol Med Microbiol 9(2):109–115

    PubMed  CAS  Google Scholar 

  29. Johnson GM, Lee DA, Regelmann WE, Gray ED, Peters G, Quie PG (1986) Interference with granulocyte function by Staphylococcus epidermidis slime. Infect Immun 54(1):13–20

    PubMed  CAS  Google Scholar 

  30. Noble MA, Reid PE, Park CM, Chan VY (1986) Inhibition of human neutrophil bacteriocidal activity by extracellular substance from slime-producing Staphylococcus epidermidis. Diagn Microbiol Infect Dis 4(4):335–339

    PubMed  CAS  Google Scholar 

  31. Kristian SA, Birkenstock TA, Sauder U, Mack D, Gotz F, Landmann R (2008) Biofilm formation induces C3a release and protects Staphylococcus epidermidis from IgG and complement deposition and from neutrophil-dependent killing. J Infect Dis 197(7):1028–1035

    PubMed  Google Scholar 

  32. Otto M (2006) Bacterial evasion of antimicrobial peptides by biofilm formation. Curr Top Microbiol Immunol 306:251–258

    PubMed  CAS  Google Scholar 

  33. O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79

    PubMed  Google Scholar 

  34. Wang R, Khan BA, Cheung GY, Bach TH, Jameson-Lee M, Kong KF, Queck SY, Otto M (2011) Staphylococcus epidermidis surfactant peptides promote biofilm maturation and dissemination of biofilm-associated infection in mice. J Clin Invest 121(1):238–248

    PubMed  CAS  Google Scholar 

  35. Boles BR, Thoendel M, Singh PK (2005) Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Mol Microbiol 57(5):1210–1223

    PubMed  CAS  Google Scholar 

  36. Branda SS, Gonzalez-Pastor JE, Ben-Yehuda S, Losick R, Kolter R (2001) Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci U S A 98(20):11621–11626

    PubMed  CAS  Google Scholar 

  37. Foster TJ, Hook M (1998) Surface protein adhesins of Staphylococcus aureus. Trends Microbiol 6(12):484–488

    PubMed  CAS  Google Scholar 

  38. Bowden MG, Chen W, Singvall J, Xu Y, Peacock SJ, Valtulina V, Speziale P, Hook M (2005) Identification and preliminary characterization of cell-wall-anchored proteins of Staphylococcus epidermidis. Microbiology 151(Pt 5):1453–1464

    PubMed  CAS  Google Scholar 

  39. Davis SL, Gurusiddappa S, McCrea KW, Perkins S, Hook M (2001) SdrG, a fibrinogen-binding bacterial adhesin of the microbial surface components recognizing adhesive matrix molecules subfamily from Staphylococcus epidermidis, targets the thrombin cleavage site in the Bbeta chain. J Biol Chem 276(30):27799–27805

    PubMed  CAS  Google Scholar 

  40. Hartford O, O’Brien L, Schofield K, Wells J, Foster TJ (2001) The Fbe (SdrG) protein of Staphylococcus epidermidis HB promotes bacterial adherence to fibrinogen. Microbiology 147(Pt 9):2545–2552

    PubMed  CAS  Google Scholar 

  41. Williams RJ, Henderson B, Sharp LJ, Nair SP (2002) Identification of a fibronectin-binding protein from Staphylococcus epidermidis. Infect Immun 70(12):6805–6810

    PubMed  CAS  Google Scholar 

  42. Heilmann C, Hussain M, Peters G, Gotz F (1997) Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol 24(5):1013–1024

    PubMed  CAS  Google Scholar 

  43. Heilmann C, Thumm G, Chhatwal GS, Hartleib J, Uekotter A, Peters G (2003) Identification and characterization of a novel autolysin (Aae) with adhesive properties from Staphylococcus epidermidis. Microbiology 149(Pt 10):2769–2778

    PubMed  CAS  Google Scholar 

  44. Bowden MG, Visai L, Longshaw CM, Holland KT, Speziale P, Hook M (2002) Is the GehD lipase from Staphylococcus epidermidis a collagen binding adhesin? J Biol Chem 277(45):43017–43023

    PubMed  CAS  Google Scholar 

  45. Mazmanian SK, Liu G, Ton-That H, Schneewind O (1999) Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science 285(5428):760–763

    PubMed  CAS  Google Scholar 

  46. Heilmann C (2011) Adhesion mechanisms of staphylococci. Adv Exp Med Biol 715:105–123

    PubMed  Google Scholar 

  47. Mack D, Fischer W, Krokotsch A, Leopold K, Hartmann R, Egge H, Laufs R (1996) The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1,6-linked glucosaminoglycan: purification and structural analysis. J Bacteriol 178(1):175–183

    PubMed  CAS  Google Scholar 

  48. Heilmann C, Schweitzer O, Gerke C, Vanittanakom N, Mack D, Gotz F (1996) Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol Microbiol 20(5):1083–1091

    PubMed  CAS  Google Scholar 

  49. Conlon KM, Humphreys H, O’Gara JP (2002) Regulation of icaR gene expression in Staphylococcus epidermidis. FEMS Microbiol Lett 216(2):171–177

    PubMed  CAS  Google Scholar 

  50. Conlon KM, Humphreys H, O’Gara JP (2002) icaR encodes a transcriptional repressor involved in environmental regulation of ica operon expression and biofilm formation in Staphylococcus epidermidis. J Bacteriol 184(16):4400–4408

    PubMed  CAS  Google Scholar 

  51. Jefferson KK, Pier DB, Goldmann DA, Pier GB (2004) The teicoplanin-associated locus regulator (TcaR) and the intercellular adhesin locus regulator (IcaR) are transcriptional inhibitors of the ica locus in Staphylococcus aureus. J Bacteriol 186(8):2449–2456

    PubMed  CAS  Google Scholar 

  52. Handke LD, Slater SR, Conlon KM, O’Donnell ST, Olson ME, Bryant KA, Rupp ME, O’Gara JP, Fey PD (2007) SigmaB and SarA independently regulate polysaccharide intercellular adhesin production in Staphylococcus epidermidis. Can J Microbiol 53(1):82–91

    PubMed  CAS  Google Scholar 

  53. Li M, Villaruz AE, Vadyvaloo V, Sturdevant DE, Otto M (2008) AI-2-dependent gene regulation in Staphylococcus epidermidis. BMC Microbiol 8:4

    PubMed  Google Scholar 

  54. Vuong C, Gerke C, Somerville GA, Fischer ER, Otto M (2003) Quorum-sensing control of biofilm factors in Staphylococcus epidermidis. J Infect Dis 188(5):706–718

    PubMed  CAS  Google Scholar 

  55. Gerke C, Kraft A, Sussmuth R, Schweitzer O, Gotz F (1998) Characterization of the N-acetylglucosaminyltransferase activity involved in the biosynthesis of the Staphylococcus epidermidis polysaccharide intercellular adhesin. J Biol Chem 273(29):18586–18593

    PubMed  CAS  Google Scholar 

  56. Vuong C, Kocianova S, Voyich JM, Yao Y, Fischer ER, DeLeo FR, Otto M (2004) A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence. J Biol Chem 279(52):54881–54886

    PubMed  CAS  Google Scholar 

  57. Maira-Litran T, Kropec A, Goldmann DA, Pier GB (2005) Comparative opsonic and protective activities of Staphylococcus aureus conjugate vaccines containing native or deacetylated staphylococcal poly-N-acetyl-beta-(1–6)-glucosamine. Infect Immun 73(10):6752–6762

    PubMed  CAS  Google Scholar 

  58. Mack D, Haeder M, Siemssen N, Laufs R (1996) Association of biofilm production of coagulase-negative staphylococci with expression of a specific polysaccharide intercellular adhesin. J Infect Dis 174(4):881–884

    PubMed  CAS  Google Scholar 

  59. Kogan G, Sadovskaya I, Chaignon P, Chokr A, Jabbouri S (2006) Biofilms of clinical strains of Staphylococcus that do not contain polysaccharide intercellular adhesin. FEMS Microbiol Lett 255(1):11–16

    PubMed  CAS  Google Scholar 

  60. Rohde H, Burandt EC, Siemssen N, Frommelt L, Burdelski C, Wurster S, Scherpe S, Davies AP, Harris LG, Horstkotte MA, Knobloch JK, Ragunath C, Kaplan JB, Mack D (2007) Polysaccharide intercellular adhesin or protein factors in biofilm accumulation of Staphylococcus epidermidis and Staphylococcus aureus isolated from prosthetic hip and knee joint infections. Biomaterials 28(9):1711–1720

    PubMed  CAS  Google Scholar 

  61. Mack D, Riedewald J, Rohde H, Magnus T, Feucht HH, Elsner HA, Laufs R, Rupp ME (1999) Essential functional role of the polysaccharide intercellular adhesin of Staphylococcus epidermidis in hemagglutination. Infect Immun 67(2):1004–1008

    PubMed  CAS  Google Scholar 

  62. Stevens NT, Sadovskaya I, Jabbouri S, Sattar T, O’Gara JP, Humphreys H, Greene CM (2009) Staphylococcus epidermidis polysaccharide intercellular adhesin induces IL-8 expression in human astrocytes via a mechanism involving TLR2. Cell Microbiol 11(3):421–432

    PubMed  CAS  Google Scholar 

  63. Vuong C, Otto M (2008) The biofilm exopolysaccharide polysaccharide intercellular adhesin—a molecular and biochemical approach. Methods Mol Biol 431:97–106

    PubMed  CAS  Google Scholar 

  64. Rupp ME, Fey PD, Heilmann C, Gotz F (2001) Characterization of the importance of Staphylococcus epidermidis autolysin and polysaccharide intercellular adhesin in the pathogenesis of intravascular catheter-associated infection in a rat model. J Infect Dis 183(7):1038–1042

    PubMed  CAS  Google Scholar 

  65. Rupp ME, Ulphani JS, Fey PD, Bartscht K, Mack D (1999) Characterization of the importance of polysaccharide intercellular adhesin/hemagglutinin of Staphylococcus epidermidis in the pathogenesis of biomaterial-based infection in a mouse foreign body infection model. Infect Immun 67(5):2627–2632

    PubMed  CAS  Google Scholar 

  66. Rupp ME, Ulphani JS, Fey PD, Mack D (1999) Characterization of Staphylococcus epidermidis polysaccharide intercellular adhesin/hemagglutinin in the pathogenesis of intravascular catheter-associated infection in a rat model. Infect Immun 67(5):2656–2659

    PubMed  CAS  Google Scholar 

  67. Begun J, Gaiani JM, Rohde H, Mack D, Calderwood SB, Ausubel FM, Sifri CD (2007) Staphylococcal biofilm exopolysaccharide protects against Caenorhabditis elegans immune defenses. PLoS Pathog 3(4):e57

    PubMed  Google Scholar 

  68. Kristian SA, Golda T, Ferracin F, Cramton SE, Neumeister B, Peschel A, Gotz F, Landmann R (2004) The ability of biofilm formation does not influence virulence of Staphylococcus aureus and host response in a mouse tissue cage infection model. Microb Pathog 36(5):237–245

    PubMed  CAS  Google Scholar 

  69. Chokr A, Leterme D, Watier D, Jabbouri S (2007) Neither the presence of ica locus, nor in vitro-biofilm formation ability is a crucial parameter for some Staphylococcus epidermidis strains to maintain an infection in a guinea pig tissue cage model. Microb Pathog 42(2–3):94–97

    PubMed  CAS  Google Scholar 

  70. Glaser L (1973) Bacterial cell surface polysaccharides. Annu Rev Biochem 42:91–112

    PubMed  CAS  Google Scholar 

  71. Sadovskaya I, Vinogradov E, Li J, Jabbouri S (2004) Structural elucidation of the extracellular and cell-wall teichoic acids of Staphylococcus epidermidis RP62A, a reference biofilm-positive strain. Carbohydr Res 339(8):1467–1473

    PubMed  CAS  Google Scholar 

  72. Lambert PA, Worthington T, Tebbs SE, Elliott TS (2000) Lipid S, a novel Staphylococcus epidermidis exocellular antigen with potential for the serodiagnosis of infections. FEMS Immunol Med Microbiol 29(3):195–202

    PubMed  CAS  Google Scholar 

  73. Queck SY, Khan BA, Wang R, Bach TH, Kretschmer D, Chen L, Kreiswirth BN, Peschel A, DeLeo FR, Otto M (2009) Mobile genetic element-encoded cytolysin connects virulence to methicillin resistance in MRSA. PLoS Pathog 5(7):e1000533

    PubMed  Google Scholar 

  74. Gross M, Cramton SE, Gotz F, Peschel A (2001) Key role of teichoic acid net charge in Staphylococcus aureus colonization of artificial surfaces. Infect Immun 69(5):3423–3426

    PubMed  CAS  Google Scholar 

  75. Weidenmaier C, Kokai-Kun JF, Kristian SA, Chanturiya T, Kalbacher H, Gross M, Nicholson G, Neumeister B, Mond JJ, Peschel A (2004) Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections. Nat Med 10(3):243–245

    PubMed  CAS  Google Scholar 

  76. Weidenmaier C, Peschel A (2008) Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions. Nat Rev Microbiol 6(4):276–287

    PubMed  CAS  Google Scholar 

  77. Hussain M, Heilmann C, Peters G, Herrmann M (2001) Teichoic acid enhances adhesion of Staphylococcus epidermidis to immobilized fibronectin. Microb Pathog 31(6):261–270

    PubMed  CAS  Google Scholar 

  78. Holland LM, Conlon B, O’Gara JP (2011) Mutation of tagO reveals an essential role for wall teichoic acids in Staphylococcus epidermidis biofilm development. Microbiology 157(Pt 2):408–418

    PubMed  CAS  Google Scholar 

  79. Peschel A, Otto M, Jack RW, Kalbacher H, Jung G, Gotz F (1999) Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem 274(13):8405–8410

    PubMed  CAS  Google Scholar 

  80. Li M, Cha DJ, Lai Y, Villaruz AE, Sturdevant DE, Otto M (2007) The antimicrobial peptide-sensing system aps of Staphylococcus aureus. Mol Microbiol 66(5):1136–1147

    PubMed  CAS  Google Scholar 

  81. Peschel A, Jack RW, Otto M, Collins LV, Staubitz P, Nicholson G, Kalbacher H, Nieuwenhuizen WF, Jung G, Tarkowski A, van Kessel KP, van Strijp JA (2001) Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine. J Exp Med 193(9):1067–1076

    PubMed  CAS  Google Scholar 

  82. Li M, Lai Y, Villaruz AE, Cha DJ, Sturdevant DE, Otto M (2007) Gram-positive three-component antimicrobial peptide-sensing system. Proc Natl Acad Sci U S A 104(22):9469–9474

    PubMed  CAS  Google Scholar 

  83. Hussain M, Herrmann M, von Eiff C, Perdreau-Remington F, Peters G (1997) A 140-kilodalton extracellular protein is essential for the accumulation of Staphylococcus epidermidis strains on surfaces. Infect Immun 65(2):519–524

    PubMed  CAS  Google Scholar 

  84. Banner MA, Cunniffe JG, Macintosh RL, Foster TJ, Rohde H, Mack D, Hoyes E, Derrick J, Upton M, Handley PS (2007) Localized tufts of fibrils on Staphylococcus epidermidis NCTC 11047 are comprised of the accumulation-associated protein. J Bacteriol 189(7):2793–2804

    PubMed  CAS  Google Scholar 

  85. Conrady DG, Brescia CC, Horii K, Weiss AA, Hassett DJ, Herr AB (2008) A zinc-dependent adhesion module is responsible for intercellular adhesion in staphylococcal biofilms. Proc Natl Acad Sci U S A 105(49):19456–19461

    PubMed  CAS  Google Scholar 

  86. Rohde H, Burdelski C, Bartscht K, Hussain M, Buck F, Horstkotte MA, Knobloch JK, Heilmann C, Herrmann M, Mack D (2005) Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation-associated protein by staphylococcal and host proteases. Mol Microbiol 55(6):1883–1895

    PubMed  CAS  Google Scholar 

  87. Macintosh RL, Brittan JL, Bhattacharya R, Jenkinson HF, Derrick J, Upton M, Handley PS (2009) The terminal A domain of the fibrillar accumulation-associated protein (Aap) of Staphylococcus epidermidis mediates adhesion to human corneocytes. J Bacteriol 191(22):7007–7016

    PubMed  CAS  Google Scholar 

  88. Christner M, Franke GC, Schommer NN, Wendt U, Wegert K, Pehle P, Kroll G, Schulze C, Buck F, Mack D, Aepfelbacher M, Rohde H (2010) The giant extracellular matrix-binding protein of Staphylococcus epidermidis mediates biofilm accumulation and attachment to fibronectin. Mol Microbiol 75(1):187–207

    PubMed  CAS  Google Scholar 

  89. Cucarella C, Solano C, Valle J, Amorena B, Lasa I, Penades JR (2001) Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J Bacteriol 183(9):2888–2896

    PubMed  CAS  Google Scholar 

  90. Tormo MA, Knecht E, Gotz F, Lasa I, Penades JR (2005) Bap-dependent biofilm formation by pathogenic species of Staphylococcus: evidence of horizontal gene transfer? Microbiology 151(Pt 7):2465–2475

    PubMed  CAS  Google Scholar 

  91. Lasa I, Penades JR (2006) Bap: a family of surface proteins involved in biofilm formation. Res Microbiol 157(2):99–107

    PubMed  CAS  Google Scholar 

  92. Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280(5361):295–298

    PubMed  CAS  Google Scholar 

  93. Yarwood JM, Bartels DJ, Volper EM, Greenberg EP (2004) Quorum sensing in Staphylococcus aureus biofilms. J Bacteriol 186(6):1838–1850

    PubMed  CAS  Google Scholar 

  94. Vuong C, Saenz HL, Gotz F, Otto M (2000) Impact of the agr quorum-sensing system on adherence to polystyrene in Staphylococcus aureus. J Infect Dis 182(6):1688–1693

    PubMed  CAS  Google Scholar 

  95. Vuong C, Kocianova S, Yao Y, Carmody AB, Otto M (2004) Increased colonization of indwelling medical devices by quorum-sensing mutants of Staphylococcus epidermidis in vivo. J Infect Dis 190(8):1498–1505

    PubMed  Google Scholar 

  96. Boles BR, Horswill AR (2008) Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog 4(4):e1000052

    PubMed  Google Scholar 

  97. Ashiuchi M, Misono H (2002) Biochemistry and molecular genetics of poly-gamma-glutamate synthesis. Appl Microbiol Biotechnol 59(1):9–14

    PubMed  CAS  Google Scholar 

  98. Oppermann-Sanio FB, Steinbuchel A (2002) Occurrence, functions and biosynthesis of polyamides in microorganisms and biotechnological production. Naturwissenschaften 89(1):11–22

    PubMed  CAS  Google Scholar 

  99. Kocianova S, Vuong C, Yao Y, Voyich JM, Fischer ER, DeLeo FR, Otto M (2005) Key role of poly-gamma-DL-glutamic acid in immune evasion and virulence of Staphylococcus epidermidis. J Clin Invest 115(3):688–694

    PubMed  CAS  Google Scholar 

  100. Makino S, Uchida I, Terakado N, Sasakawa C, Yoshikawa M (1989) Molecular characterization and protein analysis of the cap region, which is essential for encapsulation in Bacillus anthracis. J Bacteriol 171(2):722–730

    PubMed  CAS  Google Scholar 

  101. Foster TJ (2005) Immune evasion by staphylococci. Nat Rev Microbiol 3(12):948–958

    PubMed  CAS  Google Scholar 

  102. Bautista L, Gaya P, Medina M, Nunez M (1988) A quantitative study of enterotoxin production by sheep milk staphylococci. Appl Environ Microbiol 54(2):566–569

    PubMed  CAS  Google Scholar 

  103. Marin ME, de la Rosa MC, Cornejo I (1992) Enterotoxigenicity of Staphylococcus strains isolated from Spanish dry-cured hams. Appl Environ Microbiol 58(3):1067–1069

    PubMed  CAS  Google Scholar 

  104. Madhusoodanan J, Seo KS, Remortel B, Park JY, Hwang SY, Fox LK, Park YH, Deobald CF, Wang D, Liu S, Daugherty SC, Gill AL, Bohach GA, Gill SR (2011) An enterotoxin-bearing pathogenicity island in Staphylococcus epidermidis. J Bacteriol 193(8):1854–1862

    PubMed  CAS  Google Scholar 

  105. Marraffini LA, Sontheimer EJ (2008) CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322(5909):1843–1845

    PubMed  CAS  Google Scholar 

  106. Mehlin C, Headley CM, Klebanoff SJ (1999) An inflammatory polypeptide complex from Staphylococcus epidermidis: isolation and characterization. J Exp Med 189(6):907–918

    PubMed  CAS  Google Scholar 

  107. Liles WC, Thomsen AR, O’Mahony DS, Klebanoff SJ (2001) Stimulation of human neutrophils and monocytes by staphylococcal phenol-soluble modulin. J Leukoc Biol 70(1):96–102

    PubMed  CAS  Google Scholar 

  108. Hajjar AM, O’Mahony DS, Ozinsky A, Underhill DM, Aderem A, Klebanoff SJ, Wilson CB (2001) Cutting edge: functional interactions between toll-like receptor (TLR) 2 and TLR1 or TLR6 in response to phenol-soluble modulin. J Immunol 166(1):15–19

    PubMed  CAS  Google Scholar 

  109. Kretschmer D, Gleske AK, Rautenberg M, Wang R, Koberle M, Bohn E, Schoneberg T, Rabiet MJ, Boulay F, Klebanoff SJ, van Kessel KA, van Strijp JA, Otto M, Peschel A (2010) Human formyl peptide receptor 2 senses highly pathogenic Staphylococcus aureus. Cell Host Microbe 7(6):463–473

    PubMed  CAS  Google Scholar 

  110. Cheung GY, Rigby K, Wang R, Queck SY, Braughton KR, Whitney AR, Teintze M, DeLeo FR, Otto M (2010) Staphylococcus epidermidis strategies to avoid killing by human neutrophils. PLoS Pathog 6(10). doi:10.1371/journal.ppat.1001133

  111. Rautenberg M, Joo HS, Otto M, Peschel A (2011) Neutrophil responses to staphylococcal pathogens and commensals via the formyl peptide receptor 2 relates to phenol-soluble modulin release and virulence. FASEB J 25(4):1254–1263

    PubMed  CAS  Google Scholar 

  112. Wang R, Braughton KR, Kretschmer D, Bach TH, Queck SY, Li M, Kennedy AD, Dorward DW, Klebanoff SJ, Peschel A, DeLeo FR, Otto M (2007) Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat Med 13(12):1510–1514

    PubMed  CAS  Google Scholar 

  113. Vuong C, Durr M, Carmody AB, Peschel A, Klebanoff SJ, Otto M (2004) Regulated expression of pathogen-associated molecular pattern molecules in Staphylococcus epidermidis: quorum-sensing determines pro-inflammatory capacity and production of phenol-soluble modulins. Cell Microbiol 6(8):753–759

    PubMed  CAS  Google Scholar 

  114. McKevitt AI, Bjornson GL, Mauracher CA, Scheifele DW (1990) Amino acid sequence of a deltalike toxin from Staphylococcus epidermidis. Infect Immun 58(5):1473–1475

    PubMed  CAS  Google Scholar 

  115. Gill SR, Fouts DE, Archer GL, Mongodin EF, Deboy RT, Ravel J, Paulsen IT, Kolonay JF, Brinkac L, Beanan M, Dodson RJ, Daugherty SC, Madupu R, Angiuoli SV, Durkin AS, Haft DH, Vamathevan J, Khouri H, Utterback T, Lee C, Dimitrov G, Jiang L, Qin H, Weidman J, Tran K, Kang K, Hance IR, Nelson KE, Fraser CM (2005) Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. J Bacteriol 187(7):2426–2438

    PubMed  CAS  Google Scholar 

  116. Zhang YQ, Ren SX, Li HL, Wang YX, Fu G, Yang J, Qin ZQ, Miao YG, Wang WY, Chen RS, Shen Y, Chen Z, Yuan ZH, Zhao GP, Qu D, Danchin A, Wen YM (2003) Genome-based analysis of virulence genes in a non-biofilm-forming Staphylococcus epidermidis strain (ATCC 12228). Mol Microbiol 49(6):1577–1593

    PubMed  CAS  Google Scholar 

  117. Lai Y, Villaruz AE, Li M, Cha DJ, Sturdevant DE, Otto M (2007) The human anionic antimicrobial peptide dermcidin induces proteolytic defence mechanisms in staphylococci. Mol Microbiol 63(2):497–506

    PubMed  CAS  Google Scholar 

  118. Dubin G, Chmiel D, Mak P, Rakwalska M, Rzychon M, Dubin A (2001) Molecular cloning and biochemical characterisation of proteases from Staphylococcus epidermidis. Biol Chem 382(11):1575–1582

    PubMed  CAS  Google Scholar 

  119. Iwase T, Uehara Y, Shinji H, Tajima A, Seo H, Takada K, Agata T, Mizunoe Y (2010) Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature 465(7296):346–349

    PubMed  CAS  Google Scholar 

  120. Farrell AM, Foster TJ, Holland KT (1993) Molecular analysis and expression of the lipase of Staphylococcus epidermidis. J Gen Microbiol 139(2):267–277

    PubMed  CAS  Google Scholar 

  121. Simons JW, van Kampen MD, Riel S, Gotz F, Egmond MR, Verheij HM (1998) Cloning, purification and characterisation of the lipase from Staphylococcus epidermidis—comparison of the substrate selectivity with those of other microbial lipases. Eur J Biochem 253(3):675–683

    PubMed  CAS  Google Scholar 

  122. Chamberlain NR, Brueggemann SA (1997) Characterisation and expression of fatty acid modifying enzyme produced by Staphylococcus epidermidis. J Med Microbiol 46(8):693–697

    PubMed  CAS  Google Scholar 

  123. von Eiff C, Becker K, Machka K, Stammer H, Peters G (2001) Nasal carriage as a source of Staphylococcus aureus bacteremia. Study Group. N Engl J Med 344(1):11–16

    Google Scholar 

  124. Ji G, Beavis R, Novick RP (1997) Bacterial interference caused by autoinducing peptide variants. Science 276(5321):2027–2030

    PubMed  CAS  Google Scholar 

  125. Otto M, Echner H, Voelter W, Gotz F (2001) Pheromone cross-inhibition between Staphylococcus aureus and Staphylococcus epidermidis. Infect Immun 69(3):1957–1960

    PubMed  CAS  Google Scholar 

  126. Lina G, Boutite F, Tristan A, Bes M, Etienne J, Vandenesch F (2003) Bacterial competition for human nasal cavity colonization: role of staphylococcal agr alleles. Appl Environ Microbiol 69(1):18–23

    PubMed  CAS  Google Scholar 

  127. Krismer B, Peschel A (2011) Does Staphylococcus aureus nasal colonization involve biofilm formation? Future Microbiol 6(5):489–493. doi:10.2217/fmb.11.37

    PubMed  Google Scholar 

  128. Massey RC, Horsburgh MJ, Lina G, Hook M, Recker M (2006) The evolution and maintenance of virulence in Staphylococcus aureus: a role for host-to-host transmission? Nat Rev Microbiol 4(12):953–958

    PubMed  CAS  Google Scholar 

  129. Yao Y, Sturdevant DE, Villaruz A, Xu L, Gao Q, Otto M (2005) Factors characterizing Staphylococcus epidermidis invasiveness determined by comparative genomics. Infect Immun 73(3):1856–1860

    PubMed  CAS  Google Scholar 

  130. Kozitskaya S, Cho SH, Dietrich K, Marre R, Naber K, Ziebuhr W (2004) The bacterial insertion sequence element IS256 occurs preferentially in nosocomial Staphylococcus epidermidis isolates: association with biofilm formation and resistance to aminoglycosides. Infect Immun 72(2):1210–1215

    PubMed  CAS  Google Scholar 

  131. Gu J, Li H, Li M, Vuong C, Otto M, Wen Y, Gao Q (2005) Bacterial insertion sequence IS256 as a potential molecular marker to discriminate invasive strains from commensal strains of Staphylococcus epidermidis. J Hosp Infect 61(4):342–348

    PubMed  CAS  Google Scholar 

  132. Li M, Wang X, Gao Q, Lu Y (2009) Molecular characterization of Staphylococcus epidermidis strains isolated from a teaching hospital in Shanghai, China. J Med Microbiol 58(Pt 4):456–461

    PubMed  CAS  Google Scholar 

  133. Galdbart JO, Allignet J, Tung HS, Ryden C, El Solh N (2000) Screening for Staphylococcus epidermidis markers discriminating between skin-flora strains and those responsible for infections of joint prostheses. J Infect Dis 182(1):351–355

    PubMed  CAS  Google Scholar 

  134. Ziebuhr W, Krimmer V, Rachid S, Lossner I, Gotz F, Hacker J (1999) A novel mechanism of phase variation of virulence in Staphylococcus epidermidis: evidence for control of the polysaccharide intercellular adhesin synthesis by alternating insertion and excision of the insertion sequence element IS256. Mol Microbiol 32(2):345–356

    PubMed  CAS  Google Scholar 

  135. Rogers KL, Rupp ME, Fey PD (2008) The presence of icaADBC is detrimental to the colonization of human skin by Staphylococcus epidermidis. Appl Environ Microbiol 74(19):6155–6157

    PubMed  CAS  Google Scholar 

  136. Miragaia M, Thomas JC, Couto I, Enright MC, de Lencastre H (2007) Inferring a population structure for Staphylococcus epidermidis from multilocus sequence typing data. J Bacteriol 189(6):2540–2552

    PubMed  CAS  Google Scholar 

  137. Rohde H, Kalitzky M, Kroger N, Scherpe S, Horstkotte MA, Knobloch JK, Zander AR, Mack D (2004) Detection of virulence-associated genes not useful for discriminating between invasive and commensal Staphylococcus epidermidis strains from a bone marrow transplant unit. J Clin Microbiol 42(12):5614–5619

    PubMed  CAS  Google Scholar 

  138. Otto M (2009) Staphylococcus epidermidis—the ‘accidental’ pathogen. Nat Rev Microbiol 7:555–567

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Intramural Research Program of the National Institute of Allergy and Infectious Diseases, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Otto.

Additional information

This article is published as part of the Special Issue on Immunopathology of staphylococcal infections [34:3].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otto, M. Molecular basis of Staphylococcus epidermidis infections. Semin Immunopathol 34, 201–214 (2012). https://doi.org/10.1007/s00281-011-0296-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-011-0296-2

Keywords

Navigation