Skip to main content
Log in

Discovery of a Novel Wolbachia Supergroup in Isoptera

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Wolbachia are one of the most abundant groups of bacterial endosymbionts in the biosphere. Interest in these heritable microbes has expanded with the discovery of wider genetic diversity in undersampled host species. Here, we report on the putative discovery of a new genetic lineage, denoted supergroup H, which infects the Isopteran species Zootermopsis angusticollis and Z. nevadensis. Evidence for this novel supergroup is based on portions of new Wolbachia gene sequences from each species spanning 3.5 kilobases of DNA and the following genes: 16S rDNA, dnaA, gltA, groEL, and ftsZ. Single-gene and concatenated maximum likelihood phylogenies establish this new supergroup and validate the positioning of the other Wolbachia supergroups. This discovery is the first example of a termite Wolbachia that is highly divergent from the Isopteran Wolbachia previously described in supergroup F. This study highlights the importance of multilocus approaches to resolving Wolbachia supergroup relationships. It also suggests that surveys of Wolbachia in more earlier-originating (and undersampled) groups of arthropods are more apt to reveal novel genetic diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Literature Cited

  1. Bandi C, Anderson TJ, et al. (1998) Phylogeny of Wolbachia in filarial nematodes. Proc R Soc Lond B Biol Sci 265(1413):2407–2413

    Article  CAS  Google Scholar 

  2. Bandi C, Sironi M. et al. (1997) Phylogenetically distant intracellular symbionts in termites. Parassitologia 39(1):71–75

    PubMed  CAS  Google Scholar 

  3. Bandi C, Trees AJ, et al. (2001) Wolbachia in filarial nematodes: Evolutionary aspects and implications for the pathogenesis and treatment of filarial diseases. Vet Parasitol 98(1–3):215–238

    Article  PubMed  CAS  Google Scholar 

  4. Bordenstein SR, Wernegreen JJ (2004) Bacteriophage flux in endosymbionts (Wolbachia): Infection frequency, lateral transfer, and recombination rate. Mol Biol Evol 21:1981–1991

    Article  PubMed  CAS  Google Scholar 

  5. Brauman A, Dore J et al. (2001) Molecular phylogenetic profiling of prokaryotic communities in guts of termites with different feeding habits. FEMS Microbiol Ecol 35(1):2736

    Google Scholar 

  6. Breznak JA (2000) Ecology of prokaryotic microbes in the guts of wood- and litter-feeding termites. In: Abe T, Bignell DE, Higashi M (eds). Termites: Evolution, sociality, symbiosis, ecology. Dordrecht: Kluwer Academic, pp 209–231

    Google Scholar 

  7. Casiraghi M, McCall JW, et al. (2002) Tetracycline treatment and sex-ratio distortion: A role for Wolbachia in the moulting of filarial nematodes? Int J Parasitol 32(12):1457–1468

    Article  PubMed  CAS  Google Scholar 

  8. Casiraghi M, Werren JH, et al. (2003) DnaA gene sequences from Wolbachia pipientis support subdivision into supergroups and provide no evidence for recombination in the lineages infecting nematodes. Parassitologia 45(1):13–18

    PubMed  CAS  Google Scholar 

  9. Charlat S, Hurst GD, et al. (2003) Evolutionary consequences of Wolbachia infections. Trends Genet 19(4):217–223

    Article  PubMed  CAS  Google Scholar 

  10. Clark ME, Veneti Z, et al. (2003) Wolbachia distribution and cytoplasmic incompatibility during sperm development: The cyst as the basic cellular unit of CI expression. Mech Dev 120(2):185–198

    Article  PubMed  CAS  Google Scholar 

  11. Czarnetzki AB, Tebbe CC (2004) Detection and phylogenetic analysis of Wolbachia in Collembola. Environ Microbiol 6(1):35–44

    Article  PubMed  CAS  Google Scholar 

  12. Degnan P, Lazarus A, et al. (2004) Host–symbiont stability and fast evolutionary rates in an ant–bacterium association: Cospeciation of Camponotus species and their endosymbionts, Candidatus Blochmannia. Syst Biol 53:95–110

    Article  PubMed  Google Scholar 

  13. Douady CJ, Delsuc F, et al. (2003) Comparison of Bayesian and maximum likelihood bootstrap measures of phylogenetic reliability. Mol Biol Evol 20(2):248–254

    Article  PubMed  CAS  Google Scholar 

  14. Dumler JS, Barbet AF, et al. (2001) Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: Unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and ‘‘HGE agent’ as subjective synonyms of Ehrlichia phagocytophila. Int J Syst Evol Microbiol 51(Pt 6):2145–2165

    PubMed  CAS  Google Scholar 

  15. Eggleton P (2001) Termites and trees: a review of recent advances in termite phylogenetics. Insects Sociaux 48:187–193

    Article  Google Scholar 

  16. Foster J, Ganatra M, et al. (2005) The Wolbachia genome of Brugia malayi: Endosymbiont evolution within a human pathogenic nematode. PLoS Biol 3(4):e121

    Article  PubMed  CAS  Google Scholar 

  17. Gorham CH, Fang QQ, et al. (2003) Wolbachia endosymbionts in fleas (Siphonaptera). J Parasitol 89(2):283–289

    Article  PubMed  CAS  Google Scholar 

  18. Hoerauf A, Nissen-Pahle K, et al. (1999) Tetracycline therapy targets intracellular bacteria in the filarial nematode Litomosoides sigmodontis and results in filarial infertility. J Clin Invest 103(1): 11–18

    Article  PubMed  CAS  Google Scholar 

  19. Honigberg BM (1970) Protozoa associated with termites and their role in digestion. In: Krishna K, Weesner FM (eds). Biology of termites.vol 2 New York: Academic Press, pp 1–3

    Google Scholar 

  20. Jeyaprakash A, Hoy MA (2000) Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76% of sixty-three arthropod species. Insect Mol Biol 9(4):393–405

    Article  PubMed  CAS  Google Scholar 

  21. Lo N, Casiraghi M, et al. (2002) How many Wolbachia supergroups exist? Mol Biol Evol 19(3):341–346

    PubMed  CAS  Google Scholar 

  22. Moran NA (1996) Accelerated evolution and Muller’s rachet in endosymbiotic bacteria. Proc Natl Acad Sci USA 93(7):2873–2878

    Article  PubMed  CAS  Google Scholar 

  23. Pannebakker BA, Pijnacker LP, et al. (2004) Cytology of Wolbachia-induced parthenogenesis in Leptopilina clavipes (Hymenoptera: Figitidae). Genome 47(2):299–303

    Article  PubMed  Google Scholar 

  24. Rasgon JL, Scott TW (2004) Phylogenetic characterization of Wolbachia symbionts infecting Cimex-lectularius L. and Oeciacus vicarius Horvath (Hemiptera : Cimicidae). J Med Entomol 41(6):1175–1178

    Article  PubMed  CAS  Google Scholar 

  25. Reed KM, Werren JH (1995) Induction of paternal genome loss by the paternal-sex-ratio chromosome and cytoplasmic incompatibility bacteria (Wolbachia): A comparative study of early embryonic events. Mol Reprod Dev 40(4):408–418

    Article  PubMed  CAS  Google Scholar 

  26. Rokas A, Williams BL, et al. (2003) Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425(6960):798–804

    Article  PubMed  CAS  Google Scholar 

  27. Rowley SM, Raven RJ, et al. (2004) Wolbachia pipientis in Australian spiders. Curr Microbiol 49:208–214

    Article  PubMed  CAS  Google Scholar 

  28. Salzberg S L, Hotopp JC, et al. (2005) Serendipitous discovery of Wolbachia genomes in multiple Drosophila species. Genome Biol 6(3):R23

    Article  PubMed  Google Scholar 

  29. Sands WL (1969) The association of termite and fungi. In: Krishna K, Weesner FM (eds). Biology of termites.vol 1 New York: Academic Press, pp 496–524

    Google Scholar 

  30. Shellman-Reeve JS (1997) Advantages of biparental care in the wood-dwelling termite, Zootermopsis nevadensis. Anim Behav 54(1):163–170

    Article  PubMed  Google Scholar 

  31. Stackebrandt E, Frederiksen W, et al. (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52(Pt 3):1043–1047

    Article  PubMed  CAS  Google Scholar 

  32. Stackebrandt E, Goebel BM (1994) A place for DNA-DNA reassociation and 16S ribosomal-RNA sequence-analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44(4):846–849

    Article  CAS  Google Scholar 

  33. Stouthamer R, Breeuwer JA, et al. (1999) Wolbachia pipientis: Microbial manipulator of arthropod reproduction. Annu Rev Microbiol 53:71–102

    Article  PubMed  CAS  Google Scholar 

  34. Stouthamer R, Kazmer DJ (1994) Cytogenetics of microbe-associated parthenogenesis and its consequences for gene flow in Trichogramma wasps. Heredity 73:317–327

    Article  Google Scholar 

  35. Vandekerckhove TT, Watteyne S, et al. (1999) Phylogenetic analysis of the 16S rDNA of the cytoplasmic bacterium Wolbachia from the novel host Folsomia candida (Hexapoda, Collembola) and its implications for Wolbachial taxonomy. FEMS Microbiol Lett 180(2):279–286

    Article  PubMed  CAS  Google Scholar 

  36. Weesner FM (1970) Termites of the Neartic region. In: Krishna K, Weesner FM (eds). Biology of termites.vol 2 New York: Academic Press, pp 477–525

    Google Scholar 

  37. Werren JH (1997) Biology of Wolbachia. Annu Rev Entomol 42:587–609

    Article  PubMed  CAS  Google Scholar 

  38. Werren JH, Windsor DM (2000) Wolbachia infection frequencies in insects: Evidence of a global equilibrium? Proc R Soc Lond B Biol Sci 267(1450):1277–1285

    Article  CAS  Google Scholar 

  39. Werren JH, Zhang W, et al. (1995) Evolution and phylogeny of Wolbachia: Reproductive parasites of arthropods. Proc R Soc Lond B Biol Sci 261(1360):55–63

    Article  CAS  Google Scholar 

  40. Wu M, Sun LV, et al. (2004). Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: A streamlined genome overrun by mobile genetic elements. PLoS Biol 2(3):E69

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank P. Degnan and A. Lazarus for technical assistance with sequencing. For help with Zootermopsis specimens, we appreciate Dr. Colin Brent’s shipment of Z. nevadensis individuals, and we thank the administrators of the Huddart Park, San Mateo County, CA, for allowing collection of Z. angusticollis colonies. This work was supported by grants from the NASA Astrobiology Institute (NNA04CC04A) and the Neal W. Cornell Endowed Research Fund. This work was performed while Seth Bordenstein held a National Research Council Research Associateship Award at the Marine Biological Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seth Bordenstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bordenstein, S., Rosengaus, R.B. Discovery of a Novel Wolbachia Supergroup in Isoptera. Curr Microbiol 51, 393–398 (2005). https://doi.org/10.1007/s00284-005-0084-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-005-0084-0

Keywords

Navigation