Skip to main content
Log in

Resuscitation of Viable But Not Culturable Sinorhizobium meliloti 41 pRP4-luc: Effects of Oxygen and Host Plant

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A plasmid-borne, firefly-derived, luciferase gene (luc) was inserted and stably inherited in Sinorhizobium meliloti 41 as a reporter gene. The strain obtained, S. meliloti 41/pRP4-luc, and its parental strain served as a model system for viable but not culturable (VBNC) resuscitation experiments in both in vitro and soil samples. Incubation under oxygen (O2) concentrations varying from 1% to atmospheric levels did not result in resuscitation. A demonstration of recovery was attained through exposure to the appropriate concentrations of antibiotics, bacteriostatic chloramphenicol, and bactericidal ampicillin. The resuscitation ratio was 1 recovered VBNC cell in every 105 5-cyano-2,3-di-4-tolyl-tetrazolium chloride (CTC+) bacteria. Although isolated VBNC rhizobia were unable to nodulate Medicago sativa, which apparently did not enhance VBNC reversion, resuscitated bacteria maintained their symbiotic properties. Soil experiments showed that the lack of O2 leads to onset of VBNC status as in liquid microcosm, but the number of recoverable and culturable cells decreased more drastically in soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Literature Cited

  1. Alexander E, Pham D, Steck TR (1999) The viable-but-nonculturable condition is induced by copper in Agrobacterium tumefaciens and Rhizobium leguminosarum. Appl Environ Microbiol 65:3754–3756

    PubMed  CAS  Google Scholar 

  2. Bloem J (1995) Fluorescent staining of microbes for total direct counts. In: Akkermans ADL, Van Elsas JD, De Bruijn FJ (eds) Molecular microbial ecology manual. Dordrecht, The Netherlands: Kluwer Academic Publishers, Section 4.1.8, pp 1–12

    Google Scholar 

  3. Bloomfield SF, Stewart GSAB, Dodd CER, Booth IR, Power EGM (1998) The viable but nonculturable phenomenon explained? Microbiology 144:1–2

    PubMed  CAS  Google Scholar 

  4. Bogosian G, Bourneuf EV (2001) A matter of bacterial life and death. EMBO Reports 21(9):770–774

    Article  Google Scholar 

  5. Bogossian GLE, Sammons PJL, Morris JP, O’Neil MA, Heitkamp MA, Weber DB (1996) Death of the Escherichia coli K-12 strain W3110 in soil and water. Appl Environ Microbiol 62:4114–4120

    Google Scholar 

  6. Bromfield ESP, Wheatcroft R, Barran LR (1994) Medium for direct isolation of Rhizobium meliloti from soils. Soil Biol Biochem 26:423–428

    Article  Google Scholar 

  7. Cappelier JM, Magras C, Jouve JL, Federighi M (1999) Recovery of viable but nonculturable Campylobactyer jejuni cells in two animal models. Food Microbiol 16:375–383

    Article  Google Scholar 

  8. Gribbon LT, Barer MR (1995) Oxidative metabolism in noncolturable Helicobacter pylori and Vibrio vulnificus cells studied by substrate-enhanced tetrazolium reduction and digital image processing. Appl Environ Microbiol 61:3379–3384

    PubMed  CAS  Google Scholar 

  9. Hirsch PR (2004) Release of transgenic bacterial inoculants-rhizobia as a case study. Plant Soil 266:1–10

    Article  CAS  Google Scholar 

  10. Hoffmann A, Thimm T, Dröge M, Moore ERB, Munch JC, Tebbe CC (1998) Intergeneric transfer of conjugative and mobilizable plasmids harbored by Escherichia coli in the gut of the soil microarthropod Folsomia candida (Collembola). Appl Environ Microbiol 64:2652–2659

    PubMed  CAS  Google Scholar 

  11. Kepner RL Jr, Pratt JR (1994) Use of fluorochromes for direct enumeration of total bacteria in environmental samples: past and present. Microbiol Rev 58:603–615

    PubMed  CAS  Google Scholar 

  12. Linder K, Oliver JD (1989) Membrane fatty acid and virulence changes in the viable but nonculturable state of Vibrio vulnificus. Appl Environ Microbiol 55:2837–2842

    PubMed  CAS  Google Scholar 

  13. Mascher F, Schnider-Keel U, Haas D, Défago G, Moënne-Loccoz Y (2003) Persistence and cell culturability of biocontrol strain Pseudomonas fluorescens CHA0 under plough pan conditions in soil and influence of the anaerobic regulator gene anr. Environ Microbiol 2:103–115

    Article  Google Scholar 

  14. McDougald D, Rice SA, Weichart D, Kjelleberg S (1998) Nonculturability: adaptation or debilitation? FEMS Microbiol Ecol 25:1–9

    Article  CAS  Google Scholar 

  15. McGovern VP, Oliver JD (1995) Induction of cold-responsive proteins in Vibrio vulnificus. J Bacteriol 177:4131–4133

    PubMed  CAS  Google Scholar 

  16. Mizunoe Y, Wai SN, Takade A, Yoshida S (1999) Restoration of culturability of starvation-stressed and low-temperature-stressed Escherichia coli 0157 cells by using H2O2-degrading compounds. Arch Microbiol 172:63–67

    Article  PubMed  CAS  Google Scholar 

  17. Moller A, Jansson JK (1997) Quantification of genetically tagged cyanobacteria in Baltic Sea sediment by competitive PCR. Biotechniques 22:512–518

    PubMed  CAS  Google Scholar 

  18. Mukamolova GV, Kormer SS, Yanopolskaya ND, Kaprelyants AS (1995) Properties of dormant cells in stationary-phase cultures of Micrococcus luteus during prolonged incubations. Mikrobiologiya 64:284–288

    Google Scholar 

  19. Oliver JD (1993) Formation of viable but nonculturable cells. In: Kjelleberg S (ed) Starvation in bacteria. New York: Plenum Press, pp. 239–272

    Google Scholar 

  20. Povolo S, Casella S (2000) A critical role of aniA in energy-carbon flux and symbiotic nitrogen fixation in Sinorhizobium meliloti. Arch Microbiol 174:42–49

    Article  PubMed  CAS  Google Scholar 

  21. Prakash RK, Hooykaas PJJ, Nuti MP, Lepidi AA, Ledeboer AM, Juliot JS, Dénarié J (1980) Detection, isolation, and characterization of large plasmids in Rhizobium. In: Newton WE, Orme-Johnson WH (eds) Nitrogen fixation, vol II. Baltimore, MD: Park Press, pp 136–163

    Google Scholar 

  22. Roszak DB, Colwell RR (1987) Survival strategies of bacteria in the natural environment. Microbiol Rev 51:365–379

    PubMed  CAS  Google Scholar 

  23. Roth WG, Leckie MP, Dietzler DN (1988) Restoration of colony-forming activity in osmotically stressed Escherichia coli by betaine. Appl Environ Microbiol 54:3142–3146

    PubMed  CAS  Google Scholar 

  24. Schwieger F, Willke B, Munch JC, Tebbe CC (1997) Ecological prerelease risk assessment of two genetically engineered, bioluminescent Rhizobium meliloti strains in soil column model systems. Biol Fertil Soils 25:340–348

    Article  Google Scholar 

  25. Selbitschka W, Pühler A, Simon R (1992) The construction of recA-deficient Rhizobium meliloti and R. leguminosarum strains marked with gusA or luc cassettes for use in risk assesment studies. Mol Ecol 1:9–19

    CAS  Google Scholar 

  26. Somasegaran P, Hoben HJ (1994) Handbook for rhizobia. Methods in legumes-Rhizobium technology. New York: Springer-Verlag

    Google Scholar 

  27. Toffanin A, Basaglia M, Ciardi C, Vian P, Povolo S, Casella S (2000) Energy content decrease and viable nonculturable (VNC) status induced by oxygen limitation coupled to the presence of nitrogen oxides in Rhizobium “hedysari”. Biol Fertil Soils 31:484–488

    Article  CAS  Google Scholar 

  28. Troxler J, Berling CH, Moënne-Loccoz Y, Keel C, Défago G (1997) Interaction between the biocontrol agent Pseudomonas fluorescens CHAO and Thielaviopsis basicola in tobacco roots observed by immunofluorescence microscopy. Plant Pathol 46:62–71

    Article  Google Scholar 

  29. Votyakova TV, Kaprelyants AS, Kell DB (1994) Influence of viable cells on the resuscitation of dormant cells in Microccoccus luteus cultures held in an extended stationary phase: the population effect. Appl Environ Microbiol 60:3284–3291

    PubMed  Google Scholar 

  30. Walsh S, Lappin-Scott HM, Stockdale H, Herbert BN (1995) An assessment of the metabolic activity of starved and vegetative bacteria using two redox dyes. J Microbiol Meth 24:1–9

    Article  CAS  Google Scholar 

  31. Weichart D, Kjelleberg S, (1996) Stress resistance and recovery potential of culturable and viable but nonculturable cells of Vibrio vulnificus. Microbiology 142:845–853

    Article  PubMed  CAS  Google Scholar 

  32. Williams SC, Hong Y, Danavall DCA, Howard-Jones MH, Gibson D, Frischer ME, Verity PG (1998) Distinguishing between living and nonliving bacteria: Evaluation of the vital stain propidium iodide and its combined use with molecular probes in aquatic samples. J Microbiol Meth 32:225–236

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by an EC Contract and by MiPAF (Panda Project). Silvana Povolo was the recipient of “Assegno di Ricerca” from the University of Padova.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Casella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basaglia, M., Povolo, S. & Casella, S. Resuscitation of Viable But Not Culturable Sinorhizobium meliloti 41 pRP4-luc: Effects of Oxygen and Host Plant. Curr Microbiol 54, 167–174 (2007). https://doi.org/10.1007/s00284-005-0482-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-005-0482-3

Keywords

Navigation