Skip to main content
Log in

Photoinactivation of Candida albicans by Its Own Endogenous Porphyrins

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The possibility of photoeradicating the prokaryotic microorganism Candida albicans by enhancing its endogenous porphyrin production and accumulation was investigated in this study. Induction of porphyrin synthesis was performed by the addition of δ-aminolevulinic acid (ALA), or its hydrophobic derivative ALA methyl ester (m-ALA). Photoinactivation of C. albicans was performed under blue light (407–420 nm) illumination. A decrease in viability of about 1.6 or 2.1 orders of magnitudes was obtained with a light dose of 36 J/cm2 for an initial concentration of 100-mg/ml ALA or m-ALA, respectively. Endogenous porphyrins extracted from the cells showed that cultures incubated with m-ALA accumulated a relatively higher amount of endogenous porphyrins than ALA, indicating better transport through the yeast cell barriers. When a combination of miconazole and ketoconazole (antifungal agents) is given at a sub-inhibitory concentration (0.5 μg/ml each) with an inducer, a 2.1 or 3.2 orders of magnitude decrease in viability is caused with ALA or with m-ALA, respectively, upon illumination. Fluorescence intensities of the accumulated porphyrins as demonstrated by FACS indicate that the combination of the two azole drugs and an inducer cause a relatively high amount of endogenous porphyrins. Although the additive action of both azole drugs allow better penetration of the inducer, especially m-ALA photoeradication remained limited because of an acidic pH generated in the presence of the inducer. The acidic pH is probably the cause for the inefficiency of the photodynamic treatment. More hydrophobic inducers than m-ALA and less acidic must be investigated to improve the photodynamic treatment by endogenous-induced porphyrins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig.  2
Fig. 3

Similar content being viewed by others

References

  1. Ashkenazi H, Malik Z, Harth Y, Nitzan Y (2003) Eradication of Propionibacterium acnes by its endogenic porphyrins after illumination with high intensity blue light. FEMS Immunol Med Microbiol 35:17–24

    Article  CAS  PubMed  Google Scholar 

  2. Bhatti M, MacRobert A, Meghji S, Henderson B, Wilson M (1997) Effect of dosimetric and physiological factors on the lethal photosensitization of Porphyromonas gingivalis in vitro. Photochem Photobiol 65:1026–1031

    Article  CAS  PubMed  Google Scholar 

  3. Bliss J, Bieglow C, Foster T, Haidaris CG (2004) Susceptibility of Candida species to photodynamic effects of Photofrin. Antimicrob Agents Chemother 48:2000–2006

    Article  CAS  PubMed  Google Scholar 

  4. Braun BR, Johnson AD (1997) Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277:105–109

    Article  CAS  PubMed  Google Scholar 

  5. Buffo J, Herman MA, Soll DR (1984) A characterization of pH-regulated dimorphism in Candida albicans. Mycopathologia 85:21–30

    Article  CAS  PubMed  Google Scholar 

  6. Casas A, Batel A (2002) Rational design of 5-aminolevulinic acid derivatives aimed at improving photodynamic therapy. Curr Med Chem Anticancer Agents 2:465–475

    Article  CAS  PubMed  Google Scholar 

  7. Davis D (2003) Adaptation to environmental pH in Candida albicans and its relation to pathogenesis. Curr Genet 44:1–7

    Article  CAS  PubMed  Google Scholar 

  8. De Bernardis F, Muhlschlegel FA, Cassone A, Fonzi WA (1998) The pH of the host niche controls gene expression in and virulence of Candida albicans. Infect Immun 66:3317–3325

    PubMed  Google Scholar 

  9. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Koberlik M, Moan J, Peng Q (1998) Photodynamic therapy. J Natl Cancer Inst 90:889–905

    Article  CAS  PubMed  Google Scholar 

  10. Edwards JE (1991) Invasive Candida infections—Evolution of a fungal pathogen. New Engl J Med 324:1060–1062

    Article  PubMed  Google Scholar 

  11. Fotinos N, Convert M, Piffaretti JC, Gurny R, Lange N (2008) Effects on gram-negative and gram-positive bacteria mediated by 5-aminolevulinic acid and 5-aminolevulinic acid derivatives. Antimicrob Agents Chemother 52:1366–1373

    Article  CAS  PubMed  Google Scholar 

  12. Germaine GR, Tellefson LM (1981) Effect of pH and human saliva on protease production by Candida albicans. Infect Immun 31:323–326

    CAS  PubMed  Google Scholar 

  13. Ghannoum MA, Rice LB (1999) Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin Microbiol Rev 12:501–517

    CAS  PubMed  Google Scholar 

  14. Greenwood D (1997) Antibiotic sensitivity testing. In: Greenwood DJ (ed) Antimicrobial chemotherapy, 3rd edn. Oxford University Press, Oxford, pp 99–109 Chapter 7

    Google Scholar 

  15. Izzo AD, Walsh JT (2004) Light-induced modulation of Porphyromonas gingivalis growth. J Photochem Photobiol B-Biol 77:63–69

    Article  CAS  Google Scholar 

  16. Kamp H, Tietz HJ, Piazena H, Sowyrda P, Lademann J, Blume-Peytavi U (2005) Antifungal effect of 5-aminolevulinic acid PDT in Trichophyton rubrum. Mycoses 48:101–107

    Article  CAS  PubMed  Google Scholar 

  17. Kanafani ZA, Perfect JR (2008) Resistance to antifungal agents: mechanisms and clinical impact. Clin Infect Dis 46:120–128

    Article  PubMed  Google Scholar 

  18. Kelly SL, Lamb DC, Loeffler J, Einsele H, Kelly DE (1999) The G464S amino acid substitution in Candida albicans sterol 14 alpha-demethylase causes fluconazole resistance in the clinic through reduced affinity. Biochem Biophys Res Commun 262:174–179

    Article  CAS  PubMed  Google Scholar 

  19. Kobayashi D, Kondo K, Uehara N, Otokozawa S, Tsuji N, Yagihashi A, Watanabe N (2002) Endogenous reactive oxygen species is an important mediator of miconazole antifungal effect. Antimicrob Agents Chemother 46:3113–3117

    Article  CAS  PubMed  Google Scholar 

  20. Lambrechts SAG, Aalders MCG, Van Marle J (2005) Mechanistic study of the photodynamic inactivation of Candida albicans by a cationic porphyrin. Antimicrob Agents Chemother 49:2026–2034

    Article  CAS  PubMed  Google Scholar 

  21. Lambrechts SAG, Aalders MCG, Verbraaks FD, Lagerberg JWM, Dankert JB, Schuitmaker JJ (2005) Effect of albumin on the photodynamic inactivation of microorganisms by a cationic porphyrin. J Photochem Photobiol B: Biol 79:51–57

    Article  CAS  Google Scholar 

  22. Liao RS, Rennie RP, Talbot JA (2003) Sublethal injury and resuscitation of Candida albicans after amphotericin B treatment. Antimicrob Agents Chemother 47:1200–1206

    Article  CAS  PubMed  Google Scholar 

  23. Macdonald I, Dougherty T (2001) Basic principles of photodynamic therapy. J Porphyrins Phthalocyanines 5:105–129

    Article  CAS  Google Scholar 

  24. Molero G, Diez-Orejas R, Navarro-Garcia F, Monteolivia L, Pla J, Gil C, Sanchez-Perez M, Nombela C (1998) Candida albicans: genetics, dimorphism and pathogenicity. Int Microbiol 1:95–106

    CAS  PubMed  Google Scholar 

  25. Monfrecola G, Procaccini EM, Bevilacqua M, Manco A, Calabro G, Santoianni P (2004) In vitro effect of 5-aminolaevulinic acid plus visible light on Candida albicans. Photochem Photobiol Sci 3:419–422

    Article  CAS  PubMed  Google Scholar 

  26. Nitzan Y, Kauffman M (1999) Endogenous porphyrin production in bacteria by δ-aminolevulinic acid and subsequent bacterial photoeradication. Lasers Med Sci 14:269–277

    Article  Google Scholar 

  27. Nitzan Y, Malik Z, Kauffman M, Ehrenberg B, Berg K, Moan J (1997) Induction of endogenic porphyrin production in bacteria and subsequence photoinactivation by various light sources. Photochemotherapy: Photodynamic Therapy and Other Modalities III, pp. 89-94

  28. Nitzan Y, Salmon-Divon M, Shporen E, Malik Z (2004) ALA induced photodynamic effects on gram positive and negative bacteria. Photochem Photobiol Sci 3:430–435

    Article  CAS  PubMed  Google Scholar 

  29. Odds FC (1982) Interactions among amphotericin B, 5-fluocytosine, ketoconazole, and miconazole against pathogenic fungi in vitro. Antimicrob Agents Chemother 22:763–770

    CAS  PubMed  Google Scholar 

  30. Odds FC (1987) Candida infections: an overview. Crit Rev Microbiol 15:1–5

    Article  CAS  PubMed  Google Scholar 

  31. Peng Q, Berg K, Moan J, Kongshaug M, Nesland JM (1997) 5-aminolevulinic acid-based photodynamic therapy: principles and experimental research. Photochem Photobiol 65:235–251

    Article  CAS  PubMed  Google Scholar 

  32. Ramstad S, Le Anh-Vu N, Johnsson A (2006) The temperature dependence of porphyrin production in Propionibacterium acnes after incubation with 5-aminolevulinic acid (ALA) and its methyl ester (m-ALA). Photochem Photobiol Sci 5:66–72

    Article  CAS  PubMed  Google Scholar 

  33. Sailer R, Strauss WSL, Konig K, Ruck A, Steiner R (1997) Correlation between porphyrin biosynthesis and photodynamic inactivation of Pseudomonas aeruginosa after incubation with 5-aminolevulinic acid. J Photochem Photobiol B Biol 36:236–242

    Article  Google Scholar 

  34. Scheven M, Scheven C, Hahn K, Senf A (1995) Post-antibiotic effect and post-expositional polyene antagonism of azole antifungal agents in Candida albicans: dependence on substance lipophilia. Mycoses 38:435–442

    Article  CAS  PubMed  Google Scholar 

  35. Scott EM, Tariq VN, McCrory RM (1995) Demonstration of synergy with fluconazole and either ibuprofen, sodium salicylate or propylparaben against Candida albicans in vitro. Antimicrob Agents Chemother 39:2610–2614

    CAS  PubMed  Google Scholar 

  36. Sud IJ, Feingold DS (1985) Effect of ketoconazole in combination with other inhibitors of sterol synthesis on fungal growth. Antimicrob Agents Chemother 28:532–534

    CAS  PubMed  Google Scholar 

  37. Van den Bossche H, Willemsens G, Cools W, Lauwers WFJ, Le Jeune L (1978) Biochemical effects of miconazole on fungi. 2. Inhibition of ergosterol biosynthesis in Candida albicans. Chem-Biol Interact 21:59–78

    Article  PubMed  Google Scholar 

  38. Van den Bossche H, Willemsens G, Cools W, Marichal HP, Lauwers WFJ (1983) Hypothesis on the molecular basis of the antifungal activity of N-substituted imidazoles and triazoles. Biochem Soc Trans 11:665–667

    PubMed  Google Scholar 

  39. Van der Meulen FW, Ibrahim K, Sterenborg HJCM, Alphen LV, Maikoe A, Dankert J (1997) Photodynamic destruction of Haemophilus parainfluenzae by endogenously produced porphyrins. J Photochem Photobiol B Biol 40:204–208

    Article  Google Scholar 

  40. Wilson RB, Davis D, Mitchell AP (1999) Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J Bacteriol 181:1868–1874

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors wish to thank Mrs. Rachel Dror for her excellent technical assistance. This research was supported in part by a Grant from the Health Sciences Research Center Funds (to Y. Nitzan) and in part by the Rappaport Foundation for Clinical Microbiology (to Y. Nitzan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeshayahu Nitzan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oriel, S., Nitzan, Y. Photoinactivation of Candida albicans by Its Own Endogenous Porphyrins. Curr Microbiol 60, 117–123 (2010). https://doi.org/10.1007/s00284-009-9514-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-009-9514-8

Keywords

Navigation