Skip to main content
Log in

P450 Redox Enzymes in the White Rot Fungus Phanerochaete chrysosporium: Gene Transcription, Heterologous Expression, and Activity Analysis on the Purified Proteins

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

With an aim to understand the cytochrome P450 enzyme system in the white rot fungus Phanerochaete chrysosporium, here we report molecular characterization of its P450 redox proteins including the primary P450 oxidoreductase (POR) and two alternate P450 redox proteins cytochrome b5 (cyt b5) and cytochrome b5 reductase (cyt b5r) in terms of transcriptional regulation and heterologous expression. The transcript abundance followed the order POR > cyt b5r > cyt b5. Interestingly, the three genes showed an overall higher expression in the defined carbon-limited cultures with low nitrogen (LN) or high nitrogen (HN) versus the carbon-rich malt extract (ME) cultures. cDNA cloning and analysis revealed the following deduced protein characteristics: cyt b5 (238 amino acids, 25.38 kDa) and cyt b5r (321 amino acids, 35.52 kDa). Phylogenetic analysis revealed that the cloned cyt b5 belongs to a novel class of fungal cyt b5-like proteins. The two proteins cyt b5 and cyt b5r were heterologously expressed in E. coli and purified using affinity-based purification in an active form. The POR was heterologously expressed in Saccharomyces cerevisiae and was also purified in active form as evidenced by its cytochrome c reduction activity. This is the first report on cloning, heterologous expression, and purification of the alternate redox proteins cyt b5 and cyt b5r in E. coli and on yeast expression of POR from this model white rot fungus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Have RT, Teunissen P (2001) Oxidative mechanisms involved in lignin degradation by white rot fungi. Chem Rev 101:3397–3413

    Article  PubMed  Google Scholar 

  2. Yadav JS, Reddy CA (1993) Degradation of benzene, toluene, ethylbenzene, and xylenes (BTEX) by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 59:756–762

    CAS  PubMed  Google Scholar 

  3. Doddapaneni H, Chakraborty R, Yadav JS (2005) Genome-wide structural and evolutionary analysis of the P450 monooxygenase genes (P450ome) in the white rot fungus Phanerochaete chrysosporium: evidence for gene duplications and extensive gene clustering. BMC Genomics 6:92

    Article  PubMed  Google Scholar 

  4. Martinez D, Larrondo LF, Putnam N et al (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22:695–700

    Article  CAS  PubMed  Google Scholar 

  5. Kunic B, Truan G, Breskvar K et al (2001) Functional cloning, based on azole resistance in Saccharomyces cerevisiae, and characterization of Rhizopus nigricans redox carriers that are differentially involved in the P450-dependent response to progesterone stress. Mol Genet Genomics 265:930–940

    Article  CAS  PubMed  Google Scholar 

  6. Lesot A, Hasenfratz MP, Batard Y et al (1995) Two messenger RNAs are encoding for NADPH cytochrome–cytochrome P450 reductases in Helianthus tuberosus tuber tissues. Plant Physiol Biochem 33:751–757

    CAS  Google Scholar 

  7. Hildebrandt A, Estabrook RW (1971) Evidence for the participation of cytochrome b5 in hepatic microsomal mixed-function oxidation reaction. Arch Biochem Biophys 143:66–79

    Article  CAS  PubMed  Google Scholar 

  8. Ziegler GA, Vonrhein C, Hanukoglu I, Schulz GE (1999) The structure of adrenodoxin reductase of mitochondrial P450 systems: electron transfer for steroid biosynthesis. J Mol Biol 289:981–990

    Article  CAS  PubMed  Google Scholar 

  9. Kaya M, Matsumura K, Higashida K, Hata Y, Kawato A, Abe Y, Akita O, Takaya N, Shoun H (2004) Cloning and enhanced expression of the cytochrome P450nor gene (nicA; CYP55A5) encoding nitric oxide reductase from Aspergillus oryzae. Biosci Biotechnol Biochem 68(10):2040–2049

    Article  CAS  PubMed  Google Scholar 

  10. Doddapaneni H, Yadav JS (2004) Differential regulation and xenobiotic induction of tandem P450 monooxygenase genes pc-1 (CYP63A1) and pc-2 (CYP63A2) in the white-rot fungus Phanerochaete chrysosporium. Appl Microbiol Biotechnol 65:559–565

    Article  CAS  PubMed  Google Scholar 

  11. Subramanian V, Yadav JS (2009) Role of P450 monooxygenases in the degradation of the endocrine-disrupting chemical nonylphenol by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 75:5570–5580

    Article  CAS  PubMed  Google Scholar 

  12. Guengerich FP, Brian WR, Sari M-A et al (1991) Expression of mammalian cytochrome P450 enzymes using yeast-based vectors. Methods Enzymol 206:130–145

    Article  CAS  PubMed  Google Scholar 

  13. Doddapaneni H, Subramanian V, Yadav JS (2005) Physiological regulation, xenobiotic induction, and heterologous expression of P450 monooxygenase gene pc-3 (CYP63A3), a new member of the CYP63 gene cluster in the white-rot fungus Phanerochaete chrysosporium. Curr Microbiol 50:292–298

    Article  CAS  PubMed  Google Scholar 

  14. Yadav JS, Loper JC (2000) Cytochrome P450 oxidoreductase gene and its differentially terminated cDNAs from the white rot fungus Phanerochaete chrysosporium. Curr Genet 37:65–73

    Article  CAS  PubMed  Google Scholar 

  15. Guengerich FP (1989) Analysis and characterization of enzymes. In: Hayes AW (ed) Principles and methods of toxicology, 2nd edn. Ravan press Ltd., New York, pp 777–813

    Google Scholar 

  16. Yubisui T, Takeshita M (1980) Characterization of the purified NADH-cytochrome b5 reductase of human erythrocytes as a FAD-containing enzyme. J Biol Chem 255:2454–2456

    CAS  PubMed  Google Scholar 

  17. Warrilow AGS, Lamb DC, Kelly DE et al (2002) Phanerochaete chrysosporium NADPH-cytochrome P450 reductase kinetic mechanism. Biochem Biophys Res Commun 299:189–195

    Article  CAS  PubMed  Google Scholar 

  18. Van den Brink HJM, van den Hondel CAMJJ, van Gorcom RFM (1996) Optimization of the benzoate-inducible benzoate p-hydroxylase cytochrome P450 enzyme system in Aspergillus niger. Appl Microbiol Biotechnol 46:360–364

    Article  PubMed  Google Scholar 

  19. Malonek S, Rojas MC, Hedden P et al (2004) The NADPH-cytochrome P450 reductase gene from Gibberella fujikuroi is essential for gibberellin biosynthesis. J Biol Chem 279:25075–25084

    Article  CAS  PubMed  Google Scholar 

  20. Lei L, Waterman MR, Fulco AJ et al (2004) Availability of specific reductases controls the temporal activity of the cytochrome P450 complement of Streptomyces coelicolor A3(2). Proc Natl Acad Sci 101:494–499

    Article  CAS  PubMed  Google Scholar 

  21. Doddapaneni H, Yadav JS (2005) Microarray-based global differential expression profiling of P450 monooxygenases and regulatory proteins for signal transduction pathways in the white rot fungus Phanerochaete chrysosporium. Mol Genet Genomics 274:454–466

    Article  CAS  PubMed  Google Scholar 

  22. Subramanian V, Yadav JS (2008) Regulation and heterologous expression of P450 enzyme system components of the white rot fungus Phanerochaete chrysosorium. Enzyme Microb Technol 43:205–213

    Article  CAS  PubMed  Google Scholar 

  23. Boominathan K, D’Souza TM, Naidu PS et al (1993) Temporal expression of the major lignin peroxidase genes of Phanerochaete chrysosporium. Appl Environ Microbiol 59:3946–3950

    CAS  PubMed  Google Scholar 

  24. Vergeres G, Waskell L (1995) Cytochrome b5, its functions, structure and membrane topology. Biochimie 77:604–620

    Article  CAS  PubMed  Google Scholar 

  25. Yamazaki H, Nakano M, Gillam EM et al (1996) Requirements for cytochrome b5 in the oxidation of 7-ethoxycoumarin, chlorzoxazone, aniline, and N-nitrosodimethylamine by recombinant cytochrome P450 2E1 and by human liver microsomes. Biochem Pharmacol 26:301–309

    Article  Google Scholar 

  26. Sutter TR, Loper JC (1989) Disruption of the Saccharomyces cerevisiae gene for NADPH-cytochrome P450 reductase causes increased sensitivity to ketoconazole. Biochem Biophys Res Commun 160:1257–1266

    Article  CAS  PubMed  Google Scholar 

  27. Lamb DC, Kelly DE, Manning NJ et al (1999) Biodiversity of the P450 catalytic cycle: yeast cytochrome b5/NADH cytochrome b5 reductase complex efficiently drives the entire sterol 14-demethylation (CYP51) reaction. FEBS Lett 462:283–288

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the NIH’s National Institute of Environmental Health Sciences (NIEHS) grants ES10210 and ES015543 to JSY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagjit S. Yadav.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 30 kb)

Supplementary material 2 (DOC 38 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subramanian, V., Doddapaneni, H., Syed, K. et al. P450 Redox Enzymes in the White Rot Fungus Phanerochaete chrysosporium: Gene Transcription, Heterologous Expression, and Activity Analysis on the Purified Proteins. Curr Microbiol 61, 306–314 (2010). https://doi.org/10.1007/s00284-010-9612-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-010-9612-7

Keywords

Navigation