Skip to main content
Log in

Fluoreszenz-in-situ-Hybridisierung

Eine neue diagnostische Dimension in der Zytologie

Fluorescence in situ hybridization

A new diagnostic dimension in cytology

  • Schwerpunkt: Zytopathologie
  • Published:
Der Pathologe Aims and scope Submit manuscript

Zusammenfassung

Der Nachweis chromosomaler Veränderungen mittels Fluoreszenz-in-situ-Hybridisierung (FISH) kann die diagnostische Aussagekraft in der Zytologie markant verbessern. Nahezu jedes zytologische Präparat kann unabhängig von Entnahmeart, Fixation und Färbung mittels FISH untersucht werden. FISH verbessert die Sensitivität der Urothel- und Lungenkarzinomdiagnostik und eignet sich besonders zur Abklärung unklarer Atypien. Sie erlaubt eine zuverlässige Unterscheidung maligner von reaktiv veränderten Mesothelien. Spezifische Translokationen für die Diagnose gewisser Lymphome und Sarkome sind mittels FISH einfach nachweisbar. Die Untersuchung auf eine HER2-Amplifikation ist bei Mammakarzinomen zum Standard geworden. Die simultane FISH-Untersuchung von humanen Papillomaviren (HPV) und ausgewählter Gene könnte sich in der gynäkologischen Vorsorgezytologie als nützlich erweisen. Das Spektrum klinisch relevanter Anwendungen dieser Methode wird sich auch in Zukunft kontinuierlich erweitern.

Abstract

Fluorescence in situ hybridization (FISH) is a powerful method for the identification of chromosomal aberrations to improve the diagnostic performance of cytology. FISH is applicable to almost any type of cytological specimen irrespective of cell type, staining or fixation modality. Multi-target tests for the simultaneous analysis of four chromosomes or chromosomal loci improves the sensitivity of cytological diagnosis in bladder and lung cancer and is most helpful in equivocal cytology. FISH also allows a reliable distinction between malignant mesothelioma and reactive mesothelial cells. Specific translocations can easily be detected by FISH for precise diagnosis of lymphomas and sarcomas. Testing for HER-2 amplification has become a standard method to select patients with breast cancer for therapy with trastuzumab. Co-analysis of HPV and selected genes could become a useful approach in gynecological cytology. The spectrum of diagnostic FISH applications is continuously growing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8

Literatur

  1. Albertson DG, Collins C, McCormick F et al. (2003) Chromosome aberrations in solid tumors. Nat Genet 34: 369–376

    Article  PubMed  CAS  Google Scholar 

  2. Arentsen HC, Rosette JJ de la, Reijke TM de et al. (2007) Fluorescence in situ hybridization: a multitarget approach in diagnosis and management of urothelial cancer. Expert Rev Mol Diagn 7: 11–19

    Article  PubMed  CAS  Google Scholar 

  3. Brankley SM, Wang KK, Harwood AR et al. (2006) The development of a fluorescence in situ hybridization assay for the detection of dysplasia and adenocarcinoma in Barrett’s esophagus. J Mol Diagn 8: 260–267

    Article  PubMed  CAS  Google Scholar 

  4. Bubendorf L, Grilli B, Sauter G et al. (2001) Multiprobe FISH for enhanced detection of bladder cancer in voided urine specimens and bladder washings. Am J Clin Pathol 116: 79–86

    Article  PubMed  CAS  Google Scholar 

  5. Bubendorf L, Grilli B (2004) UroVysion multiprobe FISH in urinary cytology. Methods Mol Med 97: 117–131

    PubMed  CAS  Google Scholar 

  6. Bubendorf L, Muller P, Joos L et al. (2005) Multitarget FISH analysis in the diagnosis of lung cancer. Am J Clin Pathol 123: 516–523

    Article  PubMed  Google Scholar 

  7. Cappuzzo F, Hirsch FR, Rossi E et al. (2005) Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J Natl Cancer Inst 97: 643–655

    Article  PubMed  CAS  Google Scholar 

  8. Glatz K, Willi N, Glatz D et al. (2006) An international telecytologic quiz on urinary cytology reveals educational deficits and absence of a commonly used classification system. Am J Clin Pathol 126: 294–301

    PubMed  Google Scholar 

  9. Halling KC, King W, Sokolova IA et al. (2000) A comparison of cytology and fluorescence in situ hybridization for the detection of urothelial carcinoma. J Urol 164: 1768–1775

    Article  PubMed  CAS  Google Scholar 

  10. Halling KC, Rickman OB, Kipp BR et al. (2006) A comparison of cytology and fluorescence in situ hybridization for the detection of lung cancer in bronchoscopic specimens. Chest 130: 694–701

    Article  PubMed  Google Scholar 

  11. Heselmeyer-Haddad K, Janz V, Castle PE et al. (2003) Detection of genomic amplification of the human telomerase gene (TERC) in cytologic specimens as a genetic test for the diagnosis of cervical dysplasia. Am J Pathol 163: 1405–1416

    PubMed  CAS  Google Scholar 

  12. Hopman AH, Theelen W, Hommelberg PP et al., (2006) Genomic integration of oncogenic HPV and gain of the human telomerase gene TERC at 3q26 are strongly associated events in the progression of uterine cervical dysplasia to invasive cancer. J Pathol 210: 412–419

    Article  PubMed  CAS  Google Scholar 

  13. Illei PB, Rusch VW, Zakowski MF et al. (2003) Homozygous deletion of CDKN2A and codeletion of the methylthioadenosine phosphorylase gene in the majority of pleural mesotheliomas. Clin Cancer Res 9: 2108–2113

    PubMed  CAS  Google Scholar 

  14. Jaeckle KA, Ballman KV, Rao RD et al. (2006) Current strategies in treatment of oligodendroglioma: evolution of molecular signatures of response. J Clin Oncol 24: 1246–1252

    Article  PubMed  CAS  Google Scholar 

  15. Murphy WM (2006) What’s the trouble with cytology? J Urol 176: 2343–2346

    Article  PubMed  Google Scholar 

  16. Nieder AM, Soloway MS, Herr HW (2007) Should We Abandon the FISH Test? Eur Urol 51: 1469–1471

    Article  PubMed  Google Scholar 

  17. Oliveira AM, French CA (2005) Applications of fluorescence in situ hybridization in cytopathology: a review. Acta Cytol 49: 587–594

    PubMed  Google Scholar 

  18. Press MF, Sauter G, Bernstein L et al. (2005) Diagnostic evaluation of HER-2 as a molecular target: an assessment of accuracy and reproducibility of laboratory testing in large, prospective, randomized clinical trials. Clin Cancer Res 11: 6598–6607

    Article  PubMed  CAS  Google Scholar 

  19. Romond EH, Perez EA, Bryant J et al. (2005) Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353: 1673–1684

    Article  PubMed  CAS  Google Scholar 

  20. Savic S, Glatz K, Schoenegg R et al. (2006) Multitarget fluorescence in situ hybridization elucidates equivocal lung cytology. Chest 129: 1629–1635

    Article  PubMed  Google Scholar 

  21. Scheie D, Andresen PA, Cvancarova M et al. (2006) Fluorescence in situ hybridization (FISH) on touch preparations: a reliable method for detecting loss of heterozygosity at 1p and 19q in oligodendroglial tumors. Am J Surg Pathol 30: 828–837

    Article  PubMed  Google Scholar 

  22. Sequist LV, Bell DW, Lynch TJ et al. (2007) Molecular predictors of response to epidermal growth factor receptor antagonists in non-small-cell lung cancer. J Clin Oncol 25: 587–595

    Article  PubMed  CAS  Google Scholar 

  23. Shin HJ, Shin DM, Tarco E et al. (2003) Detection of numerical aberrations of chromosomes 7 and 9 in cytologic specimens of pleural malignant mesothelioma. Cancer 99: 233–239

    Article  PubMed  Google Scholar 

  24. Tinguely M, Frigerio S (2006) Assessment of translocations in routine diagnostics of a surgical pathology unit. Ther Umsch 63: 279–285

    Article  PubMed  CAS  Google Scholar 

  25. van Dongen JJ, Burg M van der, Langerak AW (2005) Split-signal FISH for detection of chromosome aberrations. Hematology (Suppl 1) 10: 66–72

    Google Scholar 

  26. Werner M, Wilkens L, Aubele M et al. (1997) Interphase cytogenetics in pathology: principles, methods, and applications of fluorescence in situ hybridization (FISH). Histochem Cell Biol 108: 381–390

    Article  PubMed  CAS  Google Scholar 

  27. Wolff AC, Hammond ME, Schwartz JN et al. (2007) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol 25: 118–145

    Article  PubMed  CAS  Google Scholar 

  28. Yoder BJ, Skacel M, Hedgepeth R et al. (2007) Reflex UroVysion testing of bladder cancer surveillance patients with equivocal or negative urine cytology: a prospective study with focus on the natural history of anticipatory positive findings. Am J Clin Pathol 127: 295–301

    PubMed  Google Scholar 

  29. Zellweger T, Benz G, Cathomas G et al. (2006) Multi-target fluorescence in situ hybridization in bladder washings for prediction of recurrent bladder cancer. Int J Cancer 119: 1660–1665

    Article  PubMed  CAS  Google Scholar 

  30. Zhang A, Maner S, Betz R et al. (2002) Genetic alterations in cervical carcinomas: frequent low-level amplifications of oncogenes are associated with human papillomavirus infection. Int J Cancer 101: 427–433

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor weist auf folgende Beziehungen hin: L. Bubendorf erhielt finanzielle Forschungsunterstützung durch die Firma Abbott/Vysis und ist als Referent für diese Firma tätig.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Savic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savic, S., Bubendorf, L. Fluoreszenz-in-situ-Hybridisierung. Pathologe 28, 384–392 (2007). https://doi.org/10.1007/s00292-007-0930-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-007-0930-x

Schlüsselwörter

Keywords

Navigation