Skip to main content
Log in

Characterization of mutations that are synthetic lethal with pol3-13, a mutated allele of DNA polymerase delta in Saccharomyces cerevisiae

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The pol3-13 mutation is located in the C-terminal end of POL3, the gene encoding the catalytic subunit of polymerase δ, and confers thermosensitivity onto the Saccharomyces cerevisiae mutant strain. To get insight about DNA replication control, we performed a genetic screen to identify genes that are synthetic lethal with pol3-13. Mutations in genes encoding the two other subunits of DNA polymerase δ (HYS2, POL32) were identified. Mutations in two recombination genes (RAD50, RAD51) were also identified, confirming that homologous recombination is necessary for pol3-13 mutant strain survival. Other mutations were identified in genes involved in repair and genome stability (MET18/MMS19), in the control of origin-firing and/or transcription (ABF1, SRB7), in the S/G2 checkpoint (RAD53), in the Ras-cAMP signal transduction pathway (MKS1), in nuclear pore metabolism (SEH1), in protein degradation (DOC1) and in folding (YDJ1). Finally, mutations in three genes of unknown function were isolated (NBP35, DRE2, TAH18). Synthetic lethality between pol3-13 and each of the three mutants pol32, mms19 and doc1 could be suppressed by a rad18 deletion, suggesting an important role of ubiquitination in DNA replication control. We propose that the pol3-13 mutant generates replicative problems that need both homologous recombination and an intact checkpoint machinery to be overcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1A–L.

Similar content being viewed by others

References

  • Bender A, Pringle JR (1991) Use of a screen for synthetic lethal and multicopy suppressor mutants to identify two new genes involved in morphogenesis in Saccharomyces cerevisiae. Mol Cell Biol 11:1295–1305

    CAS  PubMed  Google Scholar 

  • Bennett CB, Lewis LK, Karthikeyan G, Lobachev KS, Jin YH, Sterling JF, Snipe JR, Resnick MA (2001) Genes required for ionizing radiation resistance in yeast. Nat Genet 29:426–434

    CAS  PubMed  Google Scholar 

  • Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115–132

    Article  CAS  PubMed  Google Scholar 

  • Budd ME, Campbell JL (1995) DNA polymerases required for repair of UV-induced damage in Saccharomyces cerevisiae. Mol Cell Biol 15:2173–2179

    CAS  PubMed  Google Scholar 

  • Clark AB, Valle F, Drotschmann K, Gary RK, Kunkel TA (2000) Functional interaction of proliferating cell nuclear antigen with MSH2–MSH6 and MSH2–MSH3 complexes. J Biol Chem 275:36498–36501

    Article  CAS  PubMed  Google Scholar 

  • Cooper TG (2002) Transmitting the signal of excess nitrogen in Saccharomyces cerevisiae from the Tor proteins to the GATA factors: connecting the dots. FEMS Microbiol Rev 26:223–238

    Article  CAS  PubMed  Google Scholar 

  • Costanzo V, Avvedimento EV, Gottesman ME, Gautier J, Grieco D (1999) Protein kinase A is required for chromosomal DNA replication. Curr Biol 9:903–906

    Article  CAS  PubMed  Google Scholar 

  • Datta A, Schmeits JL, Amin NS, Lau PJ, Myung K, Kolodner RD (2000) Checkpoint-dependent activation of mutagenic repair in Saccharomyces cerevisiae pol3-01 mutants. Mol Cell 6:593–603

    CAS  PubMed  Google Scholar 

  • Davis AP, Symington LS (2001) The yeast recombinational repair protein Rad59 interacts with Rad52 and stimulates single-strand annealing. Genetics 159:515–525

    CAS  PubMed  Google Scholar 

  • Diede SJ, Gottschling DE (1999) Telomerase-mediated telomere addition in vivo requires DNA primase and DNA polymerases alpha and delta. Cell 99:723–733

    CAS  PubMed  Google Scholar 

  • Eissenberg JC, Ayyagari R, Gomes XV, Burgers PM (1997) Mutations in yeast proliferating cell nuclear antigen define distinct sites for interaction with DNA polymerase delta and DNA polymerase epsilon. Mol Cell Biol 17:6367–6378

    CAS  PubMed  Google Scholar 

  • Evans SK, Lundblad V (1999) Est1 and Cdc13 as comediators of telomerase access. Science 286:117–120

    CAS  PubMed  Google Scholar 

  • Fuss J, Linn S (2001) Human DNA polymerase epsilon colocalizes with PCNA and DNA replication late, but not early in S phase. J Biol Chem 10:10

    Google Scholar 

  • Gailus-Durner V, Xie J, Chintamaneni C, Vershon AK (1996) Participation of the yeast activator Abf1 in meiosis-specific expression of the HOP1 gene. Mol Cell Biol 16:2777–2786

    CAS  PubMed  Google Scholar 

  • Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM, Remor M, Hofert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415: 141–147

    CAS  PubMed  Google Scholar 

  • Gerik KJ, Li X, Pautz A, Burgers PM (1998) Characterization of the two small subunits of Saccharomyces cerevisiae DNA polymerase delta. J Biol Chem 273:19747–19755

    CAS  PubMed  Google Scholar 

  • Gietz RD, Sugino A (1988) New yeast–Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527–534

    CAS  PubMed  Google Scholar 

  • Giot L, Simon M, Dubois C, Faye G (1995) Suppressors of thermosensitive mutations in the DNA polymerase delta gene of Saccharomyces cerevisiae. Mol Gen Genet 246:212–222

    CAS  PubMed  Google Scholar 

  • Giot L, Chanet R, Simon M, Facca C, Faye G (1997) Involvement of the yeast DNA polymerase delta in DNA repair in vivo. Genetics 146:1239–1251

    CAS  PubMed  Google Scholar 

  • Gromoller A, Lehming N (2000a) Srb7p is a physical and physiological target of Tup1p. EMBO J 19:6845–6852

    Article  PubMed  Google Scholar 

  • Gromoller A, Lehming N (2000b) Srb7p is essential for the activation of a subset of genes. FEBS Lett 484:48–54

    Article  CAS  PubMed  Google Scholar 

  • Habraken Y, Sung P, Prakash L, Prakash S (1996) Binding of insertion/deletion DNA mismatches by the heterodimer of yeast mismatch repair proteins MSH2 and MSH3. Curr Biol 6:1185–1187

    CAS  PubMed  Google Scholar 

  • Hishida T, Ohno T, Iwasaki H, Shinagawa H (2002) Saccharomyces cerevisiae MGS1 is essential in strains deficient in the RAD6-dependent DNA damage tolerance pathway. EMBO J 21:2019–2029

    CAS  PubMed  Google Scholar 

  • Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A, Taylor P, Bennett K, Boutilier K, Yang, L, Wolting, C, Donaldson I, Schandorff S, Shewnarane J, Vo M, Taggart J, Goudreault M, Muskat B, Alfarano C, Dewar D, Lin Z, Michalickova K, Willems AR, Sassi H, Nielsen PA, Rasmussen KJ, Andersen JR, Johansen LE, Hansen LH, Jespersen H, Podtelejnikov A, Nielsen E, Crawford J, Poulsen V, Sorensen BD, Matthiesen J, Hendrickson RC, Gleeson F, Pawson T, Moran MF, Durocher D, Mann M, Hogue CW, Figeys D, Tyers M (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415:180–183

    CAS  PubMed  Google Scholar 

  • Hochstrasser M (1996) Ubiquitin-dependent protein degradation. Annu Rev Genet 30:405–439

    CAS  PubMed  Google Scholar 

  • Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419:135–141

    Article  CAS  PubMed  Google Scholar 

  • Holmes AM, Haber JE (1999) Double-strand break repair in yeast requires both leading and lagging strand DNA polymerases. Cell 96:415–424

    CAS  PubMed  Google Scholar 

  • Hopfner KP, Craig L, Moncalian G, Zinkel RA, Usui T, Owen BA, Karcher A, Henderson B, Bodmer JL, McMurray CT, Carney JP, Petrini JH, Tainer JA (2002) The Rad50 zinc-hook is a structure joining Mre11 complexes in DNA recombination and repair. Nature 418:562–566

    Article  CAS  PubMed  Google Scholar 

  • Huang M, Elledge SJ (1997) Identification of RNR4, encoding a second essential small subunit of ribonucleotide reductase in Saccharomyces cerevisiae. Mol Cell Biol 17:6105–6113

    Google Scholar 

  • Huang, ME, Calignon A de, Nicolas A, Galibert F (2000) POL32, a subunit of the Saccharomyces cerevisiae DNA polymerase delta, defines a link between DNA replication and the mutagenic bypass repair pathway. Curr Genet 38:178–187

    CAS  PubMed  Google Scholar 

  • Hubscher U, Maga G, Spadari S (2002) Eukaryotic DNA polymerases. Annu Rev Biochem 71:133–163

    Article  CAS  PubMed  Google Scholar 

  • Hwang LH, Murray AW (1997) A novel yeast screen for mitotic arrest mutants identifies DOC1, a new gene involved in cyclin proteolysis. Mol Biol Cell 8:1877–1887

    CAS  PubMed  Google Scholar 

  • Jin YH, Obert R, Burgers PM, Kunkel TA, Resnick MA, Gordenin DA (2001) The 3′→5′ exonuclease of DNA polymerase delta can substitute for the 5′ flap endonuclease Rad27/Fen1 in processing Okazaki fragments and preventing genome instability. Proc Natl Acad Sci USA 98:5122–5127

    Article  CAS  PubMed  Google Scholar 

  • Kaplun L, Ivantsiv Y, Kornitzer D, Raveh D (2000) Functions of the DNA damage response pathway target Ho endonuclease of yeast for degradation via the ubiquitin-26S proteasome system. Proc Natl Acad Sci USA 97:10077–10082

    Article  CAS  PubMed  Google Scholar 

  • Karthikeyan R, Vonarx EJ, Straffon AF, Simon M, Faye G, Kunz BA (2000) Evidence from mutational specificity studies that yeast DNA polymerases delta and epsilon replicate different DNA strands at an intracellular replication fork. J Mol Biol 299:405–419

    Article  CAS  PubMed  Google Scholar 

  • Kokoska RJ, Stefanovic L, DeMai J, Petes TD (2000) Increased rates of genomic deletions generated by mutations in the yeast gene encoding DNA polymerase delta or by decreases in the cellular levels of DNA polymerase delta. Mol Cell Biol 20:7490–7504

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Cheung KH, Ross-Macdonald P, Coelho PS, Miller P, Snyder M (2000) TRIPLES: a database of gene function in Saccharomyces cerevisiae. Nucleic Acids Res 28:81–84

    Google Scholar 

  • Lauder S, Bankmann M, Guzder SN, Sung P, Prakash L, Prakash S (1996) Dual requirement for the yeast MMS19 gene in DNA repair and RNA polymerase II transcription. Mol Cell Biol 16:6783–6793

    CAS  PubMed  Google Scholar 

  • Lawrence CW, Hinkle DC (1996) DNA polymerase zeta and the control of DNA damage induced mutagenesis in eukaryotes. Cancer Surv 28:21–31

    CAS  PubMed  Google Scholar 

  • Liberi G, Chiolo I, Pellicioli A, Lopes M, Plevani P, Muzi-Falconi M, Foiani M (2000) Srs2 DNA helicase is involved in checkpoint response and its regulation requires a functional Mec1-dependent pathway and Cdk1 activity. EMBO J 19:5027–5038

    Article  CAS  PubMed  Google Scholar 

  • Liefshitz B, Steinlauf R, Friedl A, Eckardt-Schupp F, Kupiec M (1998) Genetic interactions between mutants of the ′error-prone′ repair group of Saccharomyces cerevisiae and their effect on recombination and mutagenesis. Mutat Res 407:135–145

    CAS  PubMed  Google Scholar 

  • Lobachev KS, Stenger JE, Kozyreva OG, Jurka J, Gordenin DA, Resnick MA (2000) Inverted Alu repeats unstable in yeast are excluded from the human genome. EMBO J 19:3822–3830

    Article  CAS  PubMed  Google Scholar 

  • Lombaerts M, Tijsterman M, Verhage RA, Brouwer J (1997) Saccharomyces cerevisiae mms19 mutants are deficient in transcription-coupled and global nucleotide excision repair. Nucleic Acids Res 25:3974–3979

    Article  CAS  PubMed  Google Scholar 

  • Loo S, Laurenson P, Foss M, Dillin A, Rine J (1995) Roles of ABF1, NPL3, and YCL54 in silencing in Saccharomyces cerevisiae. Genetics 141:889–902

    CAS  PubMed  Google Scholar 

  • Lopes M, Cotta-Ramusino C, Pellicioli A, Liberi G, Plevani P, Muzi-Falconi M, Newlon CS, Foiani M (2001) The DNA replication checkpoint response stabilizes stalled replication forks. Nature 412:557–561

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Cyr DM (1998) The conserved carboxyl terminus and zinc finger-like domain of the co-chaperone Ydj1 assist Hsp70 in protein folding. J Biol Chem 273:5970–5978

    Article  CAS  PubMed  Google Scholar 

  • Marelli M, Aitchison JD, Wozniak RW (1998) Specific binding of the karyopherin Kap121p to a subunit of the nuclear pore complex containing Nup53p, Nup59p, and Nup170p. J Cell Biol 143:1813–1830

    Article  CAS  PubMed  Google Scholar 

  • Masutani C, Kusumoto R, Yamada A, Dohmae N, Yokoi M, Yuasa M, Araki M, Iwai S, Takio K, Hanaoka F (1999) The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta. Nature 399:700–704

    Article  CAS  PubMed  Google Scholar 

  • Matsuura A, Anraku Y (1993) Characterization of the MKS1 gene, a new negative regulator of the Ras-cyclic AMP pathway in Saccharomyces cerevisiae. Mol Gen Genet 238:6–16

    CAS  PubMed  Google Scholar 

  • Miled C, Mann C, Faye G (2001) Xbp1-mediated repression of CLB gene expression contributes to the modifications of yeast cell morphology and cell cycle seen during nitrogen-limited growth. Mol Cell Biol 21:3714–3724

    Article  CAS  PubMed  Google Scholar 

  • Muchowski PJ, Schaffar G, Sittler A, Wanker EE, Hayer-Hartl MK, Hartl FU (2000) Hsp70 and Hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. Proc Natl Acad Sci USA 97:7841–7846

    Article  CAS  PubMed  Google Scholar 

  • Mullen JR, Kaliraman V, Ibrahim SS, Brill SJ (2001) Requirement for three novel protein complexes in the absence of the Sgs1 DNA helicase in Saccharomyces cerevisiae. Genetics 157:103–118

    CAS  PubMed  Google Scholar 

  • Navas TA, Zhou Z, Elledge SJ (1995) DNA polymerase epsilon links the DNA replication machinery to the S phase checkpoint. Cell 80:29–39

    CAS  PubMed  Google Scholar 

  • Prakash L, Prakash S (1979) Three additional genes involved in pyrimidine dimer removal in Saccharomyces cerevisiae: RAD7, RAD14 and MMS19. Mol Gen Genet 176:351–359

    CAS  PubMed  Google Scholar 

  • Qi H, Zakian VA (2000) The Saccharomyces telomere-binding protein Cdc13p interacts with both the catalytic subunit of DNA polymerase alpha and the telomerase-associated est1 protein. Genes Dev 14:1777–1788

    CAS  PubMed  Google Scholar 

  • Reed SH, Akiyama M, Stillman B, Friedberg EC (1999) Yeast autonomously replicating sequence binding factor is involved in nucleotide excision repair. Genes Dev 13:3052–3058

    Article  CAS  PubMed  Google Scholar 

  • Rhode PR, Elsasser S, Campbell JL (1992) Role of multifunctional autonomously replicating sequence binding factor 1 in the initiation of DNA replication and transcriptional control in Saccharomyces cerevisiae. Mol Cell Biol 12:1064–1077

    CAS  PubMed  Google Scholar 

  • Rose MD, Novick P, Thomas JH, Botstein D, Fink GR (1987) A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene 60:237–243

    PubMed  Google Scholar 

  • Schiestl RH, Gietz RD (1989) High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet 16:339–346

    CAS  PubMed  Google Scholar 

  • Sherman F (1991) Getting started with yeast. Methods Enzymol 194:339–346

    Google Scholar 

  • Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27

    CAS  PubMed  Google Scholar 

  • Simon M, Giot L, Faye G (1993) A random mutagenesis procedure: application to the POL3 gene of Saccharomyces cerevisiae. Gene 127:139–144

    Article  CAS  PubMed  Google Scholar 

  • Siniossoglou S, Wimmer C, Rieger M, Doye V, Tekotte H, Weise C, Emig S, Segref A, Hurt EC (1996) A novel complex of nucleoporins, which includes Sec13p and a Sec13p homolog, is essential for normal nuclear pores. Cell 84:265–275

    CAS  Google Scholar 

  • Siniossoglou S, Santos-Rosa H, Rappsilber J, Mann M, Hurt E (1998) A novel complex of membrane proteins required for formation of a spherical nucleus. EMBO J 17:6449–6464

    Article  CAS  Google Scholar 

  • Sokolsky T, Alani E (2000) EXO1 and MSH6 are high-copy suppressors of conditional mutations in the MSH2 mismatch repair gene of Saccharomyces cerevisiae. Genetics 155:589–599

    CAS  Google Scholar 

  • Stagljar I, Hubscher U, Barberis A (1999) Activation of DNA replication in yeast by recruitment of the RNA polymerase II transcription complex. Biol Chem 380:525–530

    CAS  Google Scholar 

  • Stearns T, Botstein D (1988) Unlinked noncomplementation: isolation of new conditional-lethal mutations in each of the tubulin genes of Saccharomyces cerevisiae. Genetics 119:249–260

    CAS  PubMed  Google Scholar 

  • Struhl K, Stinchcomb DT, Scherer S, Davis RW (1979) High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc Natl Acad Sci USA 76:1035–1039

    CAS  PubMed  Google Scholar 

  • Teixeira MT, Dujon B, Fabre E (2002) Genome-wide nuclear morphology screen identifies novel genes involved in nuclear architecture and gene-silencing in Saccharomyces cerevisiae. J Mol Biol 321:551–561

    Article  CAS  Google Scholar 

  • Tercero JA, Diffley JF (2001) Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint. Nature 412:553–557

    Article  CAS  PubMed  Google Scholar 

  • Toczyski DP, Galgoczy DJ, Hartwell LH (1997) CDC5 and CKII control adaptation to the yeast DNA damage checkpoint. Cell 90:1097–1106

    CAS  PubMed  Google Scholar 

  • Tong AH, Evangelista M, Parsons AB, Xu H, Bader GD, Page N, Robinson M, Raghibizadeh S, Hogue CW, Bussey H, Andrews B, Tyers M, Boone C (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294:2364–2368

    CAS  PubMed  Google Scholar 

  • Torres-Ramos CA, Prakash S, Prakash L (1997) Requirement of yeast DNA polymerase delta in post-replicational repair of UV-damaged DNA. J Biol Chem 272:25445–25448

    CAS  PubMed  Google Scholar 

  • Tran HT, Gordenin DA, Resnick MA (1999) The 3′→5′ exonucleases of DNA polymerases delta and epsilon and the 5′→3′ exonuclease Exo1 have major roles in postreplication mutation avoidance in Saccharomyces cerevisiae. Mol Cell Biol 19:2000–2007

    CAS  Google Scholar 

  • Vitale G, Fabre E, Hurt EC (1996) NBP35 encodes an essential and evolutionary conserved protein in Saccharomyces cerevisiae with homology to a superfamily of bacterial ATPases. Gene 178:97–106

    Article  CAS  PubMed  Google Scholar 

  • Ward MP, Garrett S (1994) Suppression of a yeast cyclic AMP-dependent protein kinase defect by overexpression of SOK1, a yeast gene exhibiting sequence similarity to a developmentally regulated mouse gene. Mol Cell Biol 14:5619–5627

    CAS  Google Scholar 

  • Wilson TE, Lieber MR (1999) Efficient processing of DNA ends during yeast nonhomologous end joining. Evidence for a DNA polymerase beta (Pol4)-dependent pathway. J Biol Chem 274:23599–23609

    Article  CAS  PubMed  Google Scholar 

  • Winzeler EA, et al (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906

    Article  CAS  PubMed  Google Scholar 

  • Yang SS, Yeh E, Salmon ED, Bloom K (1997) Identification of a mid-anaphase checkpoint in budding yeast. J Cell Biol 136:345–354

    Article  CAS  PubMed  Google Scholar 

  • Zachariae W, Nasmyth K (1999) Whose end is destruction: cell division and the anaphase-promoting complex. Genes Dev 13:2039–2058

    CAS  PubMed  Google Scholar 

  • Zhao X, Chabes A, Domkin V, Thelander L, Rothstein R (2001) The ribonucleotide reductase inhibitor Sml1 is a new target of the Mec1/Rad53 kinase cascade during growth and in response to DNA damage. EMBO J 20:3544–3553

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Continual interest by G. Faye is gratefully acknowledged. We are grateful to Z. Hrisoho, G. Cheret, B. Agoutin and K. Freon for excellent technical assistance. G. Baldacci, L. Vernis-Beringue and all the members of the UMR2027 group are acknowledged for their useful criticisms of this manuscript and for continuous discussions. We also thank Dr. L. Sperling for a thorough review of this manuscript. This work was supported by the Association pour la Recherche sur le Cancer (contracts 9747, 5862).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Chanet.

Additional information

Communicated by S. Hohmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chanet, R., Heude, M. Characterization of mutations that are synthetic lethal with pol3-13, a mutated allele of DNA polymerase delta in Saccharomyces cerevisiae . Curr Genet 43, 337–350 (2003). https://doi.org/10.1007/s00294-003-0407-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-003-0407-2

Keywords

Navigation