Skip to main content
Log in

Isolation and characterisation of the mating-type (MAT) locus from Rhynchosporium secalis

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The mating-type (MAT) genes from Rhynchosporium secalis were isolated using PCR-based methods. Characterisation of the MAT idiomorphs suggests that R. secalis is closely related to the discomycetes Pyrenopeziza brassicae and Tapesia yallundae in terms of sequence and MAT locus gene composition. The MAT1-2 idiomorph contains a single gene encoding a protein with a high-mobility group (HMG) DNA-binding domain. The MAT1-1 idiomorph contains two genes, one encoding a protein with a HMG domain and the other encoding an alpha box domain. A second, previously undescribed, intron was identified within the P. brassicae MAT1-2-1 gene. Two introns were also present in the corresponding gene in R. secalis and this showed the similarity between these genes at the discomycete MAT1-2 locus. Using PCR, we identified isolates of both mating types from barley crops in different parts of the UK and showed that the composition of the MAT idiomorphs is conserved in these isolates. These findings support the hypothesis that R. secalis is a heterothallic discomycete which has an as yet unidentified teleomorph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2A, B
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ali SM, Mayfield AH, Clare BG (1976) Pathogenicity of 203 isolates of Rhynchosporium secalis on 21 barley cultivars. Plant Pathol 9:135–143

    Google Scholar 

  • Altschul,SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    PubMed  Google Scholar 

  • Arie T, Kaneko I, Yoshida T, Noguchi M, Nomura Y, Yamaguchi I (2000) Mating-type genes from asexual phytopathogenic ascomycetes Fusarium oxysporum and Alternaria alternata. Mol Plant-Microbe Interact 13:1330–1339

    Google Scholar 

  • Ballance DJ (1986) Sequences important for gene expression in filamentous fungi. Yeast 2:229–236

    CAS  PubMed  Google Scholar 

  • Bowyer P, Mueller E, Lucas J (2000) Use of an isocitrate lyase promoter-GFP fusion to monitor carbon metabolism of the plant pathogen Tapesia yallundae during infection of wheat. Mol Plant Pathol 1:253–262

    Article  CAS  Google Scholar 

  • Caldwell RM (1937) Rhynchosporium secalis of barley, rye and other grasses. J Agric Res 55:175–198

    Google Scholar 

  • Debuchy R, Coppin E (1992) The mating-types of Podospora anserina: functional analysis and sequence of the fertilization domains. Mol Gen Genet 233:113–121

    CAS  PubMed  Google Scholar 

  • Debuchy R, Arnaise S, Lecellier G (1993) The mat-allele of Podospora anserina contains three regulatory genes required for the development of fertilized female organs. Mol Gen Genet 241:667–673

    CAS  PubMed  Google Scholar 

  • Dyer PS, Nicholson P, Rezanoor HN, Lucas JA, Peberdy JF (1993) Two-allele heterothallism in Tapesia yallundae, the teleomorph of the cereal eyespot pathogen Pseudocercosporella herpotrichoides. Physiol Mol Plant Pathol 43:403–410

    Article  Google Scholar 

  • Dyer PS, Furneaux PA, Douhan G, Murray TD (2001) A multiplex PCR test for determination of mating type applied to the plant pathogens Tapesia yallundae and Tapesia acuformis. Fungal Genet Biol 33:173–180

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1989) PHYLIP—phylogeny inference package (version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Ferreira AVB, Saupe S, Glass NL (1996) Transcriptional analysis of the mt A idiomorph of Neurospora crassa identifies two genes in addition to mt A-1. Mol Gen Genet 250:767–774

    CAS  PubMed  Google Scholar 

  • Fitt BDL, Creighton NF, Lacey ME, McCartney HA (1986) Effects of rainfall intensity and duration on dispersal of Rhynchosporium secalis conidia from infected barley leaves. Trans Br Mycol Soc 86:611–618

    Google Scholar 

  • Foster SJ, Singh G, Fitt BDL, Ashby AM (1999) Development of PCR based diagnostic techniques for the two mating types of Pyrenopeziza brassicae (light leaf spot) on winter oilseed rape (Brassica napus ssp. oleifera). Physiol Mol Plant Pathol 55:111–119

    Article  CAS  Google Scholar 

  • Glass NL, Grotelueschen J, Metzenberg RL (1990) Neurospora crassa A mating-type region. Proc Natl Acad Sci USA 87:4912–4916

    CAS  PubMed  Google Scholar 

  • Goodwin SB (2002) The barley scald pathogen Rhynchosporium secalis is closely related to the discomycetes Tapesia and Pyrenopeziza. Mycol Res 106:645–654

    Article  Google Scholar 

  • Goodwin SB, Maroof MAS, Allard RW, Webster RK (1993) Isozyme variation within and among populations of Rhynchosporium secalis in Europe, Australia and the United States. Mycol Res 97:49–58

    CAS  Google Scholar 

  • Hansen LR, Magnus HA (1973) Virulence spectrum of Rhynchosporium secalis in Norway and sources of resistance in barley. Phytopathology 76:303–313

    Google Scholar 

  • Holzmann K, Schreiner E, Schwab H (2002) A Penicillium chrysogenum gene (aox) identified by specific induction upon shifting pH encodes for a protein which shows high homology to fungal alcohol oxidases. Curr Genet 40:339–344

    Article  CAS  PubMed  Google Scholar 

  • Ilott TW (1984) Studies on the reproduction of Pyrenopeziza brassicae. PhD Thesis, University of Cambridge, Cambridge

  • Jackson LF, Webster RK (1976) The dynamics of a controlled population of Rhynchosporium secalis changes in race composition and frequencies. Phytopathology 66:726–728

    Google Scholar 

  • Jørgensen HJL, Smedegaard-Peterson V (1995) Pathogenic variation of Rhynchosporium secalis in Denmark and sources of resistance in barley. Plant Dis 79:297–301

    Google Scholar 

  • Kendall S, Hollomon DW, Ishii H, Heaney SP (1994) Characterization of benzimidazole-resistant strains of Rhynchosporium secalis. Pestic Sci 40:175–181

    CAS  Google Scholar 

  • Linde CC, Zala M, Ceccarelli S, McDonald BA (2003) Further evidence for sexual reproduction in Rhynchosporium secalis based on distribution and frequency of mating-type alleles. Fungal Genet Biol (in press)

  • McCartney HA, Lacey ME (1990) The production and release of ascospores of Pyrenopeziza brassicae on oilseed rape. Plant Pathol 39:17–32

    Google Scholar 

  • McDermott JM, McDonald BA, Allard RW, Webster RK (1989) Genetic variability for pathogenicity, isozyme, ribosomal DNA and colony color variants in populations of Rhynchosporium secalis. Genetics 122:561–565

    CAS  PubMed  Google Scholar 

  • McDonald BA, Zhan J, Burdon JJ (1999) Genetic structure of Rhynchosporium secalis in Australia. Phytopathology 89:639–645

    Google Scholar 

  • McGuire IC, Marra RE, Turgeon BG, Milgroom MG (2001) Analysis of mating-type genes in the chestnut blight fungus, Cryphonectria parasitica. Fungal Genet Biol 34:131–144

    Article  CAS  PubMed  Google Scholar 

  • Metzenberg RL, Glass NL (1990) Mating type and mating strategies in Neurospora. Bioessays 12:53–59

    CAS  PubMed  Google Scholar 

  • Pöggeler S (1997) Sequence characteristics within nuclear genes from Sordaria macrospora. Fungal Genet Newsl 44:41–44

    Google Scholar 

  • Pöggeler S (2001) Mating-type genes for classical strain improvements of ascomycetes. Appl Microbiol Biotechnol 56:589–601

    Article  PubMed  Google Scholar 

  • Pöggeler S, Kuck U (2000) Comparative analysis of the mating-type loci from Neurospora crassa and Sordaria macrospora: identification of novel transcribed ORFs. Mol Gen Genet 263:292–301

    PubMed  Google Scholar 

  • Salamati S, Tronsmo AM (1997) Pathogenicity of Rhynchosporium secalis isolates from Norway on 30 cultivars of barley. Plant Pathol 46:416–424

    Google Scholar 

  • Salamati S, Zhan J, Burdon JJ, McDonald BA (2000) The genetic structure of field populations of Rhynchosporium secalis from three continents suggests moderate gene flow and regular recombination. Phytopathology 90:901–908

    CAS  Google Scholar 

  • Sharon A, Yamaguchi K, Christiansen S, Horwitz BA, Yoder OC, Turgeon BG (1996) An asexual fungus has the potential for sexual development. Mol Gen Genet 251:60–68

    Article  CAS  PubMed  Google Scholar 

  • Shipton WA, Boyd JR, Ali SM (1974) Scald of barley. Rev Plant Pathol 53:839–861

    Google Scholar 

  • Simons AJ, Skidmore DI (1988) Race-specific resistance to light leaf spot in Brassica oleracea. Trans Br Mycol Soc 90:431–435

    Google Scholar 

  • Singh G, Ashby AM (1998) Cloning of the mating type loci from Pyrenopeziza brassicae reveals the presence of a novel mating type gene within a discomycete MAT 1–2 locus encoding a putative metallothionein-like protein. Mol Microbiol 30:799–806

    Article  CAS  PubMed  Google Scholar 

  • Singh G, Ashby AM (1999) Erratum to Singh G, Ashby AM, 1998. Cloning of the mating type loci from Pyrenopeziza brassicae reveals the presence of a novel mating type gene within a discomycete MAT 1–2 locus encoding a putative metallothionein-like protein (vol 30, p. 799, 1998). Mol Microbiol 32:1115–1115

    CAS  Google Scholar 

  • Singh G, Dyer PS, Ashby AM (1999) Intra-specific and inter-specific conservation of mating-type genes from the discomycete plant-pathogenic fungi Pyrenopeziza brassicae and Tapesia yallundae. Curr Genet 36:290–300

    Google Scholar 

  • Staben C, Yanofsky C (1990) Neurospora crassa a mating-type region. Proc Natl Acad Sci USA 87:4917–4921

    CAS  PubMed  Google Scholar 

  • Staden R (1996) The Staden sequence analysis package. Mol Biotechnol 5:233–241

    CAS  PubMed  Google Scholar 

  • Tatusova TA, Madden TL (1999) BLAST 2 sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett 174:247–250

    CAS  PubMed  Google Scholar 

  • Tekauz A (1991) Pathogenic variation in Rhynchosporium secalis on barley in Canada. Can J Plant Pathol-Rev Can Phytopathol 13:298–304

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    CAS  PubMed  Google Scholar 

  • Turgeon G, Yoder OC (2000) Proposed nomenclature for mating type genes of filamentous ascomycetes. Fungal Genet Biol 31:1–5

    Article  CAS  PubMed  Google Scholar 

  • Turgeon BG, Bohlmann H, Ciuffetti LM, Christiansen SK, Yang G, Schafer W, Yoder OC (1993) Cloning and analysis of the mating-type genes from Cochliobolus heterostrophus. Mol Gen Genet 238:270–284

    CAS  PubMed  Google Scholar 

  • Unkles SE (1992) Gene organization in industrial filamentous fungi. In: Kinghorn JR, Turner G (eds) Applied molecular genetics of filamentous fungi. Chapman & Hall, London, pp 28–53

  • Waalwijk C, Mendes O, Verstappen ECP, Waard MA de, Kema GHJ (2002) Isolation and characterization of the mating-type idiomorphs from the wheat septoria leaf blotch fungus Mycosphaerella graminicola. Fungal Genet Biol 35:277–286

    Google Scholar 

  • Wallwork H, Spooner B (1988) Tapesia yallundae—the teleomorph of Pseudocercosporella herpotrichoides. Trans Br Mycol Soc 91:703–705

    Google Scholar 

  • Williams RJ, Owen H (1973) Physiologic races of Rhynchosporium secalis on barley in Britain. Trans Br Mycol Soc 60:223–234

    Google Scholar 

  • Yun SH, Arie T, Kaneko I, Yoder OC, Turgeon BG (2000). Molecular organization of mating type loci in heterothallic, homothallic, and asexual Gibberella/Fusarium species. Fungal Genet Biol 31:7–20

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Gurr SJ (2000) Walking into the unknown: a ′step down′ PCR-based technique leading to the direct sequence analysis of flanking genomic DNA. Gene 253:145–150

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge those people who supplied isolates for this work. We also thank James Fountaine and Arvind Gulati for providing DNA samples of R. secalis and thank Bruce McDonald and Celeste Linde (Federal Institute of Technology, Zurich, Switzerland) for useful discussions. Rothamsted Research receives grant-aided support from the UK Biotechnology and Biological Sciences Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon J. Foster.

Additional information

Communicated by J. Heitman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foster, S.J., Fitt, B.D.L. Isolation and characterisation of the mating-type (MAT) locus from Rhynchosporium secalis . Curr Genet 44, 277–286 (2003). https://doi.org/10.1007/s00294-003-0445-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-003-0445-9

Keywords

Navigation