Skip to main content

Advertisement

Log in

Aneuploidy and copy number breakpoints in the genome of lager yeasts mapped by microarray hybridisation

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Competitive comparative genome hybridisation (CCGH) to Saccharomyces cerevisiae DNA microarrays and quantitative real-time polymerase chain reaction (qRT-PCR) assays are used to examine the copy number of S. cerevisiae-like genes, at single gene resolution, of two bottom-fermenting lager yeast strains, CMBS-33 and 6701. Using the S. cerevisiae gene order for each chromosome, we observe that the copy number for contiguous groups of S. cerevisiae-like genes is similar in both strains. However, discrete changes in copy number occur at distinct loci, indicating the aneuploid nature of the lager yeast genomes. The majority of loci where copy number changes occur are conserved in both strains. We also identify a large segment of S. cerevisiae DNA on chromosome XVI that fails to hybridise to genomic DNA from both lager strains, suggesting that this region may have diverged significantly or is absent in the lager yeast strains. Furthermore, very low levels of mRNA transcripts are detected from this region of the genome. Interestingly, the increased gene copy number observed elsewhere (e.g. chromosome III) does not correlate specifically with increased gene expression under fermentation conditions, suggesting that dosage compensation may play a role in controlling gene expression in these strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul F, Thomas M, Alejandro S, Jinghui Z, Zheng Z, Webb M, Lipman D (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    PubMed  Google Scholar 

  • Andersen T, Hoffman L, Grifone R, Nilsson-Tillgren T, Kielland-Brandt M (1999) Brewing yeast genetics. Fachverlag Hans Carl, Nurnberg

  • Borsting C, Hummel R, Schultz E, Rose T, Pedersen M, Knudsen J, Kristiansen K (1997) Saccharomyces carlsbergensis contains two functional genes encoding acyl-CoA binding protein, one similar to the ACB1 gene from S. cerevisiae and one identical to the ACB1 genes from S. monacensis. Yeast 13:1409–1421

    Article  CAS  PubMed  Google Scholar 

  • Casaregola S, Nguyen H, Lapathitis G, Kotyk G, Gaillardin C (2001) Analysis of the constitution of the beer yeast genome by PCR, sequencing and subtelomeric sequence hybridisation. Int J Syst Evol Microbiol 51:1607–1618

    CAS  PubMed  Google Scholar 

  • Casey G (1986) Molecular and genetic analysis of chromosomes X in Saccharomyces carlsbergensis. Carlsberg Res Commun 51:343–362

    CAS  Google Scholar 

  • Casey G, Pedersen M (1988) DNA sequence polymorphisms in the genus Saccharomyces. V. Cloning and characterisation of a LEU2 gene from S. carlsbergensis. Carlsberg Res Commun 53:209–219

    CAS  PubMed  Google Scholar 

  • Casey G, Pringle A, Erdmann P (1990) Evaluation of recent techniques used to identify individual strains of Saccharomyces yeasts. Am Soc Brew Chem J 48:100–106

    CAS  Google Scholar 

  • Cliften PF, Hillier LW, Fulton L, Graves T, Miner T, Gish WR, Waterston RH, Johnston M (2001) Surveying Saccharomyces genomes to identify functional elements by comparative DNA sequence analysis. Genome Res 11:1175–1186

    Article  CAS  PubMed  Google Scholar 

  • Delneri D, Colson I, Grammenoudi S, Roberts IN, Louis EJ, Oliver SG (2003) Engineering evolution to study speciation in yeasts. Nature 422:68–72

    Article  CAS  PubMed  Google Scholar 

  • Dunham MJ, Badrane H, Ferea T, Adams J, Brown PO, Rosenzweig F, Botstein D (2002) Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 99:16144–16149

    Article  CAS  PubMed  Google Scholar 

  • Gentle A, Anastasopoulos F, McBrein NA (2001) High resolution semi-quantitative real-time PCR without the use of a standard curve. Biotechniques 31:502–508

    CAS  PubMed  Google Scholar 

  • Hansen J, Kielland-Brandt MC (1994) Saccharomyces carlsbergensis contains two functional MET2 alleles similar to homologues from S. cerevisiae and S. monacensis. Gene 194:33–40

    Article  Google Scholar 

  • Hauser NC, Fellenberg K, Gil R, Bastuck S, Hoheisel JD, Pérez-Ortín JE (2001) Whole genome analysis of a wine yeast strain. Comp Funct Genome 2:69–79

    Article  CAS  Google Scholar 

  • Holmberg S (1982) Genetic differences between Saccharomyces carlsbergensis and S. cerevisiae II. Restriction endonuclease analysis of genes in chromosome III. Carlsberg Res Commun 47:233–244

    CAS  Google Scholar 

  • Hughes T, Roberts C, Day H, Jones A, Meyer M, Slade D, Burchard J, Dow S, Ward T, Kidd M, Friend S, Marton M (2000) Widespread aneuploidy revealed by DNA microarray expression profiling. Nat Genet 25:333–337

    CAS  PubMed  Google Scholar 

  • Infante JJ, Dombek KM, Rebordinos L, Cantoral JM, Young ET (2003) Genome-wide amplifications caused by chromosomal rearrangements play a major role in the adaptive evolution of natural yeast. Genetics 165:1745–1759

    Google Scholar 

  • Ingham DJ, Beer S, Money S, Hansen G (2001) Quantitative real-time PCR assay for determining transgene copy number in transformed plants. Biotechniques 31:132–140

    CAS  PubMed  Google Scholar 

  • James T, Campbell S, Bond U (2002) Comparative analysis of global gene expression in lager and laboratory yeast strains grown in wort. Proc IEEE 90:1887–1899

    Article  CAS  Google Scholar 

  • James T, Campbell S, Donnelly D, Bond U (2003) Transcription profile of brewery yeast under fermentation conditions. J Appl Microbiol 94:432–448

    Article  CAS  PubMed  Google Scholar 

  • Jespersen L, Aa Kuhle A van der, Petersen KM (2000) Phenotypic and genetic diversity of Saccharomyces contaminants isolated from lager breweries and their phylogenetic relationship with brewing yeasts. Int J Food Microbiol 60:43–53

    Article  CAS  PubMed  Google Scholar 

  • Joubert R, Strub J-M, Zugmeyer S, Kobi D, Carte N, Dorsselaer AV, Boucherie H, Jaquet-Gutfreund L (2001) Identification by mass spectrometry of two-dimensional gel electrophoresis-separated proteins extracted from lager brewing yeast. Electrophoresis 22:2969–2982

    Article  CAS  PubMed  Google Scholar 

  • Kaiser C, Michaelis S, Mitchell A (1994) Methods in yeast genetics: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Kellis M, Patterson N, Endrizzi M, Birren B, Lander E (2003) Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423:241–254

    Article  CAS  PubMed  Google Scholar 

  • Kielland-Brandt M, Nilsson-Tillgren T, Gjermansen C, Holmberg S, Pedersen MB (1995) Genetics of brewing yeasts. Yeasts 6:224–254

    Google Scholar 

  • Kodama Y, Nakao Y, Nakamura N, Fujimura T, Shirahige K, Ashikari T (2003) Diversity of the chromosomal structure in lager brewing yeasts (abstract 16-4). Yeast 20:S276

    Article  Google Scholar 

  • Lopes MD, Bellon J, Shirley N, Ganter P (2002) Evidence for multiple interspecific hybridisation in Saccharomyces sensu stricto species. FEMS Res 1:323–331

    Article  Google Scholar 

  • Matzke M, Scheiid O, Matzke A (1999) Rapid structural and epigenetic changes in polyploid and aneuploid genomes. Bioessays 21:761–767

    Article  CAS  PubMed  Google Scholar 

  • Naumov GI, Naumova ES, Lantto RA, Louis EJ, Korhola M (1992) Genetic homology between Saccharomyces cerevisiae and its sibling species S. paradoxus and S. bayanus. Yeast 8:599–612

    CAS  PubMed  Google Scholar 

  • Nilsson-Tillgren T, Gjermansen C, Kielland-Brandt M, Petersen JL, Holmberg S (1981) Genetic differences between Saccharomyces carlsbergensis and S. cerevisiae. Analysis of chromosome III by single chromosome transfer. Carlsberg Res Commun 46:65–76

    CAS  Google Scholar 

  • Olesen K, Fleding T, Gjermansen C, Hansen J (2002) The dynamics of the Saccharomyces carlsbergensis brewing yeast transcriptome during a production-scale lager beer fermentation. FEMS Yeast Res 2:563–573

    Article  CAS  PubMed  Google Scholar 

  • Paquin C, Adams J (1983) Frequency of fixation of adaptive mutations is higher in evolving diploid and haploid yeast populations. Nature 302:495–500

    CAS  PubMed  Google Scholar 

  • Pedersen M (1986a) DNA sequence polymorphisms in the genus Saccharomyces. III. Restriction endonuclease fragment patterns of chromosomal regions in brewing and other yeast strains. Carlsberg Res Commun 51:163–168

    CAS  Google Scholar 

  • Pedersen M (1986b) DNA sequence polymorphisms in the genus Saccharomyces. IV. Homeologous chromosomes III of Saccharomyces bayanus, S. carlsbergensis and S. uvarum. Carlsberg Res Commun 51:185–202

    CAS  Google Scholar 

  • Pérez-Ortín JE, Querol A, Puig S, Barrio E (2002) Molecular characterization of a chromosomal rearrangement involved in the adaptive evolution of yeast strains. Genome Res 12:1533–1539

    Article  CAS  PubMed  Google Scholar 

  • Puig S, Querol A, Barrio E, Pérez-Ortín JE (2000) Mitotic recombination and genetic changes in Saccharomyces cerevisiae during wine fermentation. Appl Environ Microbiol 66:2057–2061

    Google Scholar 

  • Takata Y, Watari J, Nishikawa N, Kamada K (1989) Electrophoretic banding patterns of chromosomal DNA from yeasts. Am Soc Brew Chem J 47:109–113

    CAS  Google Scholar 

  • Tamai Y, Momma T, Yoshimoto H, Kaneko Y (1998) Co-existence of two types of chromosomes in the bottom fermenting yeast, Saccharomyces pastorianus. Yeast 14:923–933

    Article  CAS  PubMed  Google Scholar 

  • Vaughan-Martini A, Martini A (1987) Three newly delimited species of Saccharomyces sensu stricto. Antonie van Leewenhoek 53:77–84

    Google Scholar 

  • Wilhelm J, Pingoud A, Hahn M (2003) Real-time PCR-based method for the estimation of genome sizes. Nucleic Acids Res 31:1093–1098

    Article  Google Scholar 

  • Wolfe K (2003) Speciation reversal. Nature 422:25–26

    Article  CAS  PubMed  Google Scholar 

  • Wolfe K, Shields D (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387:708–713

    CAS  PubMed  Google Scholar 

  • Yamagishi H, Ogata T (1999) Chromosomal structures of bottom-fermenting yeasts. Syst Appl Microbiol 22:341–353

    PubMed  Google Scholar 

  • Yoshimoto H, Fujiwara D, Momma T, Tanaka K, Sone H, Nagasawa N, Tamai Y (1999) Isolation and characterisation of the AFT2 gene encoding alcohol acetyltransferase II in the bottom fermenting yeast Saccharomyces pastorianus. Yeast 15:409–417

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Professor Ken Wolfe, Genetics Department, Trinity College, for a critical evaluation of the manuscript. This work is supported by a Strategic Grant from Enterprise Ireland (ST/2000/079) as part of the National Development Plan and by a grant from the European Union (QLK1CT2001 01066).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula Bond.

Additional information

Communicated by S. Hohmann

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bond, U., Neal, C., Donnelly, D. et al. Aneuploidy and copy number breakpoints in the genome of lager yeasts mapped by microarray hybridisation. Curr Genet 45, 360–370 (2004). https://doi.org/10.1007/s00294-004-0504-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-004-0504-x

Keywords

Navigation