Skip to main content
Log in

Deletion of RNQ1 gene reveals novel functional relationship between divergently transcribed Bik1p/CLIP-170 and Sfi1p in spindle pole body separation

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Spindle pole body (SPB; the microtubule organizing center in yeast) duplication is essential to form a bipolar spindle. The duplicated SPBs must then separate and migrate to opposite sides of the nucleus. We identified a novel functional relationship in SPB separation between the microtubule stabilizing protein Bik1p/CLIP-170 and the SPB half-bridge protein Sfi1p. A genetic interaction between BIK1 and SFI1 was discovered in a synthetic lethal screen using a strain deficient in the prion protein gene RNQ1. RNQ1 deletion reduced expression from the divergently transcribed BIK1, allowing us to identify genetic interactors with bik1. The sfi1-1 bik1 synthetic lethality was suppressed by over-expression of CIK1, KAR1, and PPH21. Genetic analysis indicated that the sfi1-1 bik1 synthetic lethality was unlikely related to the function of Bik1p in the dynein pathway or to defects in spindle position. Furthermore, a sfi1-1 Δkip2 mutant was viable, suggesting that the Bik1p pool at the cytoplasmic microtubule plus-ends may not be required in sfi1-1. Microscopic examination indicated the sfi1-1 mutant was delayed in SPB duplication, SPB separation, or spindle elongation and the sfi-1 Δbik1 double mutant arrested with duplicated but unseparated SPBs. These results suggest that Bik1p has a previously uncharacterized function in the separation of duplicated SPBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adames NR, Cooper JA (2000) Microtubule interactions with the cell cortex causing nuclear movements in Saccharomyces cerevisiae. J Cell Biol 149:863–874

    Article  PubMed  CAS  Google Scholar 

  • Adams IR, Kilmartin JV (2000) Spindle pole body duplication: a model for centrosome duplication? Trends Cell Biol 10:329–335

    Article  PubMed  CAS  Google Scholar 

  • Barrett JG, Manning BD, Snyder M (2000) The Kar3p kinesin-related protein forms a novel heterodimeric structure with its associated protein Cik1p. Mol Biol Cell 11:2373–2385

    PubMed  CAS  Google Scholar 

  • Baudin A, Ozier-Kalogeropoulos O, Denouel A, Lacroute F, Cullin C (1993) A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res 21:3329–3330

    PubMed  CAS  Google Scholar 

  • Beach DL, Thibodeaux J, Maddox P, Yeh E, Bloom K (2000) The role of the proteins Kar9 and Myo2 in orienting the mitotic spindle of budding yeast. Curr Biol 10:1497–1506

    Article  PubMed  CAS  Google Scholar 

  • Begley TJ, Rosenbach AS, Ideker T, Samson LD (2002) Damage recovery pathways in Saccharomyces cerevisiae revealed by genomic phenotyping and interactome mapping. Mol Cancer Res 1:103–112

    PubMed  CAS  Google Scholar 

  • Bennett CB et al (2001) Genes required for ionizing radiation resistance in yeast. Nat Genet 29:426–434

    Article  PubMed  CAS  Google Scholar 

  • Berlin V, Styles CA, Fink GR (1990) BIK1, a protein required for microtubule function during mating and mitosis in Saccharomyces cerevisiae, colocalizes with tubulin. J Cell Biol 111:2573–2586

    Article  PubMed  CAS  Google Scholar 

  • Bianchi MM et al (1999) How to bring orphan genes into functional families. Yeast 15:513–526

    Article  PubMed  CAS  Google Scholar 

  • Biggins S, Rose MD (1994) Direct interaction between yeast spindle pole body components: Kar1p is required for Cdc31p localization to the spindle pole body. J Cell Biol 125:843–852

    Article  PubMed  CAS  Google Scholar 

  • Brachmann CB et al (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115–132

    Article  PubMed  CAS  Google Scholar 

  • Byers B, Goetsch L (1974) Duplication of spindle plaques and integration of the yeast cell cycle. Cold Spring Harb Symp Quant Biol 38:123–131

    PubMed  CAS  Google Scholar 

  • Byers B, Goetsch L (1975) Behavior of spindles and spindle plaques in the cell cycle and conjugation of Saccharomyces cerevisiae. J Bacteriol 124:511–523

    PubMed  CAS  Google Scholar 

  • Byers B, Goetsch L (1991) Preparation of yeast cells for thin-section electron microscopy. Methods Enzymol 194:602–608

    PubMed  CAS  Google Scholar 

  • Carvalho P, Gupta ML Jr, Hoyt MA, Pellman D (2004) Cell cycle control of kinesin-mediated transport of Bik1 (CLIP-170) regulates microtubule stability and dynein activation. Dev Cell 6:815–829

    Article  PubMed  CAS  Google Scholar 

  • Chen RH, Brady DM, Smith D, Murray AW, Hardwick KG (1999) The spindle checkpoint of budding yeast depends on a tight complex between the Mad1 and Mad2 proteins. Mol Biol Cell 10:2607–2618

    PubMed  CAS  Google Scholar 

  • Choi JH, Adames NR, Chan TF, Zeng C, Cooper JA, Zheng XF (2000) TOR signaling regulates microtubule structure and function. Curr Biol 10:861–864

    Article  PubMed  CAS  Google Scholar 

  • Christianson TW, Sikorski RS, Dante M, Shero JH, Hieter P (1992) Multifunctional yeast high-copy-number shuttle vectors. Gene 110:119–122

    Article  PubMed  CAS  Google Scholar 

  • Cottingham FR, Gheber L, Miller DL, Hoyt MA (1999) Novel roles for Saccharomyces cerevisiae mitotic spindle motors. J Cell Biol 147:335–350

    Article  PubMed  CAS  Google Scholar 

  • Cottingham FR, Hoyt MA (1997) Mitotic spindle positioning in Saccharomyces cerevisiae is accomplished by antagonistically acting microtubule motor proteins. J Cell Biol 138:1041–1053

    Article  PubMed  CAS  Google Scholar 

  • Daniel JA, Keyes BE, Ng YP, Freeman CO, Burke DJ (2006) Diverse functions of spindle assembly checkpoint genes in Saccharomyces cerevisiae. Genetics 172:53–65

    Article  PubMed  CAS  Google Scholar 

  • DeZwaan TM, Ellingson E, Pellman D, Roof DM (1997) Kinesin-related KIP3 of Saccharomyces cerevisiae is required for a distinct step in nuclear migration. J Cell Biol 138:1023–1040

    Article  PubMed  CAS  Google Scholar 

  • Fitch I et al (1992) Characterization of four B-type cyclin genes of the budding yeast Saccharomyces cerevisiae. Mol Biol Cell 3:805–818

    PubMed  CAS  Google Scholar 

  • Geiser JR et al (1997) Saccharomyces cerevisiae genes required in the absence of the CIN8-encoded spindle motor act in functionally diverse mitotic pathways. Mol Biol Cell 8:1035–1050

    PubMed  CAS  Google Scholar 

  • Giaever G et al (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391

    Article  PubMed  CAS  Google Scholar 

  • Goldstein AL, McCusker JH (1999) Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15:1541–1553

    Article  PubMed  CAS  Google Scholar 

  • He X, Rines DR, Espelin CW, Sorger PK (2001) Molecular analysis of kinetochore-microtubule attachment in budding yeast. Cell 106:195–206

    Article  PubMed  CAS  Google Scholar 

  • Heil-Chapdelaine RA, Oberle JR, Cooper JA (2000) The cortical protein Num1p is essential for dynein-dependent interactions of microtubules with the cortex. J Cell Biol 151:1337–1344

    Article  PubMed  CAS  Google Scholar 

  • Helfant AH (2002) Composition of the spindle pole body of Saccharomyces cerevisiae and the proteins involved in its duplication. Curr Genet 40:291–310

    Article  PubMed  CAS  Google Scholar 

  • Hoyt MA, He L, Loo KK, Saunders WS (1992) Two Saccharomyces cerevisiae kinesin-related gene products required for mitotic spindle assembly. J Cell Biol 118:109–120

    Article  PubMed  CAS  Google Scholar 

  • Huh WK et al (2003) Global analysis of protein localization in budding yeast. Nature 425:686–691

    Article  PubMed  CAS  Google Scholar 

  • Huyett A, Kahana J, Silver P, Zeng X, Saunders WS (1998) The Kar3p and Kip2p motors function antagonistically at the spindle poles to influence cytoplasmic microtubule numbers. J Cell Sci 111(Pt 3):295–301

    PubMed  CAS  Google Scholar 

  • Jacobs CW, Adams AE, Szaniszlo PJ, Pringle JR (1988) Functions of microtubules in the Saccharomyces cerevisiae cell cycle. J Cell Biol 107:1409–1426

    Article  PubMed  CAS  Google Scholar 

  • Jaspersen SL, Giddings TH Jr, Winey M (2002) Mps3p is a novel component of the yeast spindle pole body that interacts with the yeast centrin homologue Cdc31p. J Cell Biol 159:945–956

    Article  PubMed  CAS  Google Scholar 

  • Jaspersen SL, Winey M (2004) The budding yeast spindle pole body: structure, duplication, and function. Annu Rev Cell Dev Biol 20:1–28

    Article  PubMed  CAS  Google Scholar 

  • Kahana JA, Schnapp BJ, Silver PA (1995) Kinetics of spindle pole body separation in budding yeast. Proc Natl Acad Sci USA 92:9707–9711

    Article  PubMed  CAS  Google Scholar 

  • Kilmartin JV (2003) Sfi1p has conserved centrin-binding sites and an essential function in budding yeast spindle pole body duplication. J Cell Biol 162:1211–1221

    Article  PubMed  CAS  Google Scholar 

  • Koren A, Ben-Aroya S, Steinlauf R, Kupiec M (2003) Pitfalls of the synthetic lethality screen in Saccharomyces cerevisiae: an improved design. Curr Genet 43:62–69

    PubMed  CAS  Google Scholar 

  • Kusch J, Liakopoulos D, Barral Y (2003) Spindle asymmetry: a compass for the cell. Trends Cell Biol 13:562–569

    Article  PubMed  CAS  Google Scholar 

  • Lawrence CW (1991) Classical mutagenesis techniques. Methods Enzymol 194:273–281

    Article  PubMed  CAS  Google Scholar 

  • Lee L, Tirnauer JS, Li J, Schuyler SC, Liu JY, Pellman D (2000) Positioning of the mitotic spindle by a cortical-microtubule capture mechanism. Science 287:2260–2262

    Article  PubMed  CAS  Google Scholar 

  • Li R, Murray AW (1991) Feedback control of mitosis in budding yeast. Cell 66:519–531

    Article  PubMed  CAS  Google Scholar 

  • Li S, Sandercock AM, Conduit P, Robinson CV, Williams RL, Kilmartin JV (2006) Structural role of Sfi1p-centrin filaments in budding yeast spindle pole body duplication. J Cell Biol 173:867–877

    Article  PubMed  CAS  Google Scholar 

  • Lim HH, Goh PY, Surana U (1996) Spindle pole body separation in Saccharomyces cerevisiae requires dephosphorylation of the tyrosine 19 residue of Cdc28. Mol Cell Biol 16:6385–6397

    PubMed  CAS  Google Scholar 

  • Lin H et al (2001) Polyploids require Bik1 for kinetochore-microtubule attachment. J Cell Biol 155:1173–1184

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Krizek J, Bretscher A (1992) Construction of a GAL1-regulated yeast cDNA expression library and its application to the identification of genes whose overexpression causes lethality in yeast. Genetics 132:665–673

    PubMed  CAS  Google Scholar 

  • Ma P et al (1999) Deletion of SFI1, a novel suppressor of partial Ras-cAMP pathway deficiency in the yeast Saccharomyces cerevisiae, causes G(2) arrest. Yeast 15:1097–1109

    Article  PubMed  CAS  Google Scholar 

  • Manning BD, Barrett JG, Wallace JA, Granok H, Snyder M (1999) Differential regulation of the Kar3p kinesin-related protein by two associated proteins, Cik1p and Vik1p. J Cell Biol 144:1219–1233

    Article  PubMed  CAS  Google Scholar 

  • McCarthy EK, Goldstein B (2006) Asymmetric spindle positioning. Curr Opin Cell Biol 18:79–85

    Article  PubMed  CAS  Google Scholar 

  • Miller RK et al (1998) The kinesin-related proteins, Kip2p and Kip3p, function differently in nuclear migration in yeast. Mol Biol Cell 9:2051–2068

    PubMed  CAS  Google Scholar 

  • Miller RK, Rose MD (1998) Kar9p is a novel cortical protein required for cytoplasmic microtubule orientation in yeast. J Cell Biol 140:377–390

    Article  PubMed  CAS  Google Scholar 

  • Moore JK, D’Silva S, Miller RK (2006) The CLIP-170 homologue Bik1p promotes the phosphorylation and asymmetric localization of Kar9p. Mol Biol Cell 17:178–191

    Article  PubMed  CAS  Google Scholar 

  • Muhua L, Karpova TS, Cooper JA (1994) A yeast actin-related protein homologous to that in vertebrate dynactin complex is important for spindle orientation and nuclear migration. Cell 78:669–679

    Article  PubMed  CAS  Google Scholar 

  • Mumberg D, Muller R, Funk M (1994) Regulatable promoters of Saccharomyces cerevisiae: comparison of transcriptional activity and their use for heterologous expression. Nucleic Acids Res 22:5767–5768

    PubMed  CAS  Google Scholar 

  • Newman JR, Wolf E, Kim PS (2000) A computationally directed screen identifying interacting coiled coils from Saccharomyces cerevisiae. Proc Natl Acad Sci USA 97:13203–13208

    Article  PubMed  CAS  Google Scholar 

  • Orlowska-Matuszewska G, Wawrzycka D (2006) A novel phenotype of eight spores asci in deletants of the prion-like Rnq1p in Saccharomyces cerevisiae. Biochem Biophys Res Commun 340:190–193

    Article  PubMed  CAS  Google Scholar 

  • Page BD, Satterwhite LL, Rose MD, Snyder M (1994) Localization of the Kar3 kinesin heavy chain-related protein requires the Cik1 interacting protein. J Cell Biol 124:507–519

    Article  PubMed  CAS  Google Scholar 

  • Page BD, Snyder M (1992) CIK1: a developmentally regulated spindle pole body-associated protein important for microtubule functions in Saccharomyces cerevisiae. Genes Dev 6:1414–1429

    PubMed  CAS  Google Scholar 

  • Parsons AB et al (2004) Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nat Biotechnol 22:62–69

    Article  PubMed  CAS  Google Scholar 

  • Pearson CG, Bloom K (2004) Dynamic microtubules lead the way for spindle positioning. Nat Rev Mol Cell Biol 5:481–492

    Article  PubMed  CAS  Google Scholar 

  • Pellman D, Bagget M, Tu YH, Fink GR, Tu H (1995) Two microtubule-associated proteins required for anaphase spindle movement in Saccharomyces cerevisiae. J Cell Biol 130:1373–1385

    Article  PubMed  CAS  Google Scholar 

  • Pierre P, Scheel J, Rickard JE, Kreis TE (1992) CLIP-170 links endocytic vesicles to microtubules. Cell 70:887–900

    Article  PubMed  CAS  Google Scholar 

  • Ronne H, Carlberg M, Hu GZ, Nehlin JO (1991) Protein phosphatase 2A in Saccharomyces cerevisiae: effects on cell growth and bud morphogenesis. Mol Cell Biol 11:4876–4884

    PubMed  CAS  Google Scholar 

  • Roof DM, Meluh PB, Rose MD (1992) Kinesin-related proteins required for assembly of the mitotic spindle. J Cell Biol 118:95–108

    Article  PubMed  CAS  Google Scholar 

  • Rose MD, Fink GR (1987) KAR1, a gene required for function of both intranuclear and extranuclear microtubules in yeast. Cell 48:1047–1060

    Article  PubMed  CAS  Google Scholar 

  • Salisbury JL (2004) Centrosomes: Sfi1p and centrin unravel a structural riddle. Curr Biol 14:R27–R29

    Article  PubMed  CAS  Google Scholar 

  • Saunders W, Lengyel V, Hoyt MA (1997) Mitotic spindle function in Saccharomyces cerevisiae requires a balance between different types of kinesin-related motors. Mol Biol Cell 8:1025–1033

    PubMed  CAS  Google Scholar 

  • Saunders WS, Hoyt MA (1992) Kinesin-related proteins required for structural integrity of the mitotic spindle. Cell 70:451–458

    Article  PubMed  CAS  Google Scholar 

  • Schramm C, Elliott S, Shevchenko A, Schiebel E (2000) The Bbp1p-Mps2p complex connects the SPB to the nuclear envelope and is essential for SPB duplication. Embo J 19:421–433

    Article  PubMed  CAS  Google Scholar 

  • Schuyler SC, Liu JY, Pellman D (2003) The molecular function of Ase1p: evidence for a MAP-dependent midzone-specific spindle matrix. Microtubule-associated proteins. J Cell Biol 160:517–528

    Article  PubMed  CAS  Google Scholar 

  • Schwartz K, Richards K, Botstein D (1997) BIM1 encodes a microtubule-binding protein in yeast. Mol Biol Cell 8:2677–2691

    PubMed  CAS  Google Scholar 

  • Sheeman B et al (2003) Determinants of S. cerevisiae dynein localization and activation: implications for the mechanism of spindle positioning. Curr Biol 13:364–372

    Article  PubMed  CAS  Google Scholar 

  • Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27

    PubMed  CAS  Google Scholar 

  • Sneddon AA, Cohen PT, Stark MJ (1990) Saccharomyces cerevisiae protein phosphatase 2A performs an essential cellular function and is encoded by two genes. Embo J 9:4339–4346

    PubMed  CAS  Google Scholar 

  • Sondheimer N, Lindquist S (2000) Rnq1: an epigenetic modifier of protein function in yeast. Mol Cell 5:163–172

    Article  PubMed  CAS  Google Scholar 

  • Spang A, Courtney I, Fackler U, Matzner M, Schiebel E (1993) The calcium-binding protein cell division cycle 31 of Saccharomyces cerevisiae is a component of the half bridge of the spindle pole body. J Cell Biol 123:405–416

    Article  PubMed  CAS  Google Scholar 

  • Spang A, Courtney I, Grein K, Matzner M, Schiebel E (1995) The Cdc31p-binding protein Kar1p is a component of the half bridge of the yeast spindle pole body. J Cell Biol 128:863–877

    Article  PubMed  CAS  Google Scholar 

  • Sullivan DS, Biggins S, Rose MD (1998) The yeast centrin, Cdc31p, and the interacting protein kinase, Kic1p, are required for cell integrity. J Cell Biol 143:751–765

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K et al (2005) Molecular mechanisms of kinetochore capture by spindle microtubules. Nature 434:987–994

    Article  PubMed  CAS  Google Scholar 

  • Tirnauer JS, O’Toole E, Berrueta L, Bierer BE, Pellman D (1999) Yeast Bim1p promotes the G1-specific dynamics of microtubules. J Cell Biol 145:993–1007

    Article  PubMed  CAS  Google Scholar 

  • Tong AH et al (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294:2364–2368

    Article  PubMed  CAS  Google Scholar 

  • Tong AH et al (2004) Global mapping of the yeast genetic interaction network. Science 303:808–813

    Article  PubMed  CAS  Google Scholar 

  • Ubersax JA et al (2003) Targets of the cyclin-dependent kinase Cdk1. Nature 425:859–864

    Article  PubMed  CAS  Google Scholar 

  • Wach A, Brachat A, Pohlmann R, Philippsen P (1994) New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10:1793–1808

    Article  PubMed  CAS  Google Scholar 

  • Wente SR, Blobel G (1993) A temperature-sensitive NUP116 null mutant forms a nuclear envelope seal over the yeast nuclear pore complex thereby blocking nucleocytoplasmic traffic. J Cell Biol 123:275–284

    Article  PubMed  CAS  Google Scholar 

  • Wolyniak MJ, Blake-Hodek K, Kosco K, Hwang E, You L, Huffaker TC (2006) The regulation of microtubule dynamics in Saccharomyces cerevisiae by three interacting plus-end tracking proteins. Mol Biol Cell 17:2789–2798

    Article  PubMed  CAS  Google Scholar 

  • Yeh E et al (2000) Dynamic positioning of mitotic spindles in yeast: role of microtubule motors and cortical determinants. Mol Biol Cell 11:3949–3961

    PubMed  CAS  Google Scholar 

  • Zieler HA, Walberg M, Berg P (1995) Suppression of mutations in two Saccharomyces cerevisiae genes by the adenovirus E1A protein. Mol Cell Biol 15:3227–3237

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Marissa Matsumoto for initiating the synthetic lethal screen, Sarah Broekelmann for technical support, Larry Schriefer for assistance with DNA sequencing, and Howard Wynder for assistance with EM. We thank Anthony Bretscher, John Cooper, John Kilmartin, Martin Kupiec, Susan Lindquist, Rita Miller, and Mark Rose for sharing plasmids, strains, antibodies, libraries, and equipment. We are grateful to John Cooper, Jun Li, Scott Nelson, Mark Winey, and members of the True lab for helpful discussions. We thank Rachel Boutenott, Jun Li, and Scott Nelson for providing critical comments on the manuscript. This work was supported by funds from National Institutes of Health Grant AG024560, the Edward Mallinckrodt Jr. Foundation, and the Ellison Medical Foundation (awarded to H.L.T.). L.A.S. was supported by a fellowship from the Washington University Infectious Diseases Scholars Program (National Institutes of Health Ruth L. Kirschstein National Research Service Award Training Grant T32 A107172-25) and a USDA National Research Initiative Postdoctoral AREA Award (2005-35201-15383).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather L. True.

Additional information

Communicated by M. Kupiec.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strawn, L.A., True, H.L. Deletion of RNQ1 gene reveals novel functional relationship between divergently transcribed Bik1p/CLIP-170 and Sfi1p in spindle pole body separation. Curr Genet 50, 347–366 (2006). https://doi.org/10.1007/s00294-006-0098-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-006-0098-6

Keywords

Navigation