Skip to main content

Advertisement

Log in

Transcription regulatory polymorphism −43T>C in the 5′-flanking region of SLC19A1 gene could affect rheumatoid arthritis patient response to methotrexate therapy

  • Original Article
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

The reduced folate carrier (RFC) protein (SLC19A1-gene) has central role in the uptake and intracellular accumulation of folates. In this respect, we investigate whether SLC19A1 genetic variations could affect rheumatoid arthritis (RA) patient response to antifolate treatment. One hundred six unrelated RA patients were enrolled in this study. Polymerase chain reaction (PCR)-single strand conformation polymorphism (SSCP) was used as the screening method for genetic variants. Unusual SSCP patterns were characterized by direct sequencing of the PCR products and subsequently restriction assays were established. Western blot analysis of RFC protein was performed in respect of the identified SLC19A1 genotypes. Patient response to methotrexate (MTX) was evaluated using disease activity for 28 joint indices score, American College of Rheumatology 20% and 50% scores. No mutation was found in the SLC19A1 gene, but three polymorphic variants: the −43T>C in the 5′-flanking sequence to the ATG-transcription start site; and the 80G>A (R27H) and 696C>T (P232P) in the coding gene sequence. The wild type alleles of the three polymorphisms were in strict linkage disequilibrium. Western blot analysis revealed that the non-wild type allele of polymorphism −43T>C is associated with low RFC protein expression levels. Furthermore, the genotypic analysis of the functional polymorphic variant −43T>C revealed to be insufficient to predict patient response to MTX therapy. According to recent literature, several transport systems account for folate membrane transport. Additionally, in previous studies discrepancies have been reported to exist between the same genetic variants and their use in prediction of patient response to MTX therapy. Therefore, the present genotypic–phenotypic association study of a functional polymorphism revealed the need of a complex genotypic analysis in order to predict patient response to folate antagonists’ therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. van Ede AE, Laan RF, Blom HJ, De Abreu RA, van de Putte LB (1998) Methotrexate in rheumatoid arthrits: an update with focus on mechanism involved in toxicity. Semin Arthritis Rheum 27:277–292

    Article  PubMed  Google Scholar 

  2. Cronstein BN (1997) The mechanism of action of methotrexate. Rheum Dis Clin North Am 23:739–755

    Article  PubMed  CAS  Google Scholar 

  3. Felson DT, Anderson JJ, Meenan RF (1990) The comparative efficacy and toxicity of second-line drugs in rheumatoid arthritis. Results of two metaanalyses. Arthritis Rheum 33:1449–1461

    Article  PubMed  CAS  Google Scholar 

  4. Bathon JM, Martin RW, Fleischmann RM, Tesser JR, Schiff MH, Keystone EC, Genovese MC, Wasko MC, Moreland LW, Weaver AL, Markenson J, Finck BK (2000) A comparison of etanercept and methotrexate in patients with early rheumatoid arthritis. N Engl J Med 343:1586–1593

    Article  PubMed  CAS  Google Scholar 

  5. Strand V, Cohen S, Schiff M, Weaver A, Fleischmann R, Cannon G, Fox R, Moreland L, Olsen N, Furst D, Caldwell J, Kaine J, Sharp J, Hurley F, Loew-Friedrich I (1999) Treatment of active rheumatoid arthritis with leflunomide compared with placebo and methotrexate. Leflunomide Rheumatoid Arthritis Investigators Group. Arch Intern Med 159:2542–2550

    Article  PubMed  CAS  Google Scholar 

  6. Sadlish H, Williams FM, Flintoff WF (2002) Cytoplasmic domains of the reduced folate carrier are essential for trafficking, but not function. Biochem J 364:777–786

    Article  PubMed  CAS  Google Scholar 

  7. Sierra E, Zhao R, Wang Y, Babani S, Goldman ID (2002) Role of the C-terminus and the long cytoplasmic loop in reduced folate carrier expression and function. Biochem Pharmacol 63:1717–1724

    Article  Google Scholar 

  8. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, Healey LA, Kaplan SR, Liang MH, Luthra HS et al (1988) The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 31:315–324

    Article  PubMed  CAS  Google Scholar 

  9. Prevoo ML, Van’t Hof MA, Kuper HH, van Leeuwen MA, van de Putte LB, van Riel PL (1995) Modified disease activity scores that include twenty-eight-joint counts. Arthritis Rheum 38:44–48

    Article  PubMed  CAS  Google Scholar 

  10. Felson DT, Anderson JJ, Boers M, Bombardier C, Furst D, Goldsmith C, Katz LM, Lightfoot R Jr, Paulus H, Strand V et al (1995) American College of Rheumatology. Preliminary definition of improvement in rheumatoid arthritis. Arthritis Rheum 38:727–735

    Article  PubMed  CAS  Google Scholar 

  11. Kaufman Y, Drori S, Cole PD, Kamen BA, Sirota J, Ifergan I, Arush MW, Elhasid R, Sahar D, Kaspers GJ, Jansen G, Matherly LH, Rechavi G, Toren A, Assaraf YG et al (2004) Reduced folate carrier mutations are not the mechanism underlying methotrexate resistance in childhood acute lymphoblastic leukemia. Cancer 100:773–781

    Article  PubMed  CAS  Google Scholar 

  12. Said HM, Chatterjee N, Haq RU, Subramanian VS, Ortiz A, Matherly LH, Sirotnak FM, Halsted C, Rubin SA et al (2000) Adaptive regulation of intestinal folate uptake: effect of dietary folate deficiency. Am J Physiol 279:C1889–C1895

    CAS  Google Scholar 

  13. Zhao R, Gao F, Liu L, Goldman D (2000) The reduced folate carrier in L1210 murine leukaemia cells is a 58-kDa protein. Biochim Biophys Acta 1466:7–10

    Article  PubMed  CAS  Google Scholar 

  14. Brzezinska A, Winska P, Balinska M (2000) Cellular aspects of folate and antifolate membrane transport. Acta Biochim Pol 47:735–749

    PubMed  CAS  Google Scholar 

  15. Ferreri AJ, Dell’Oro S, Capello D, Ponzoni M, Iuzzolino P, Rossi D, Pasini F, Ambrosetti A, Orvieto E, Ferrarese F, Arrigoni G, Foppoli M, Reni M, Gaidano G (2004) Aberrant methylation in the promoter region of the reduced folate carrier gene is a potential mechanism of resistance to methotrexate in primary central nevrous system lymphomas. BJH 126:657–664

    Article  CAS  Google Scholar 

  16. Rothem L, Stark M, Kaufman Y, Mayo L, Assaraf YG (2004) Reduced folate carrier gene silencing in multiple antifolate-resistant tumor cell lines is due to a simultaneous loss of function of multiple factors but not promoter methylation. J Biol Chem 279:374–384

    Article  PubMed  CAS  Google Scholar 

  17. Whetstine JR, Gifford AJ, Witt T, Liu XY, Flatley RM, Norris M, Haber M, Taub JW, Ravindranath Y, Matherly LH (2001) Single nucleotide polymorphisms in the human reduced folate carrier: characterization of a high-frequency G/A variant at position 80 and transport properties of the His27 and Arg27 carriers. Clin Cancer Res 7:3416–3422

    PubMed  CAS  Google Scholar 

  18. Yang R, Sowers R, Mazza B, Healey JH, Huvos A, Grier H, Bernstein M, Beardsley GP, Krailo MD, Devidas M, Bertino JR, Meyers PA, Gorlick R (2003) Sequence alterations in the reduced folate carrier are observed in osteosarcoma tumor samples. Clin Cancer Res 9:837–844

    PubMed  CAS  Google Scholar 

  19. Dervieux T, Furst D, Lein DO, Capps R, Smith K, Walsh M, Kremer J (2004) Polyglutamation of methotrexate with common polymorphisms in reduced folate carrier, aminoidazole carboxamide ribonucleotide transformylase, and thymidylate synthase are associated with methotrexate effects in rheumatoid arthritis. Arthritis Rheum 50:2766–2774

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandros A. Drosos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatzikyriakidou, A., Georgiou, I., Voulgari, P.V. et al. Transcription regulatory polymorphism −43T>C in the 5′-flanking region of SLC19A1 gene could affect rheumatoid arthritis patient response to methotrexate therapy. Rheumatol Int 27, 1057–1061 (2007). https://doi.org/10.1007/s00296-007-0339-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-007-0339-0

Keywords

Navigation