Skip to main content

Advertisement

Log in

Celecoxib inhibits production of MMP and NO via down-regulation of NF-κB and JNK in a PGE2 independent manner in human articular chondrocytes

  • Original Article
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

The purpose of this study was to examine the effects of celecoxib on matrix metalloproteinases (MMP-1 and MMP-3), nitric oxide (NO), and the phosphorylation of nuclear factor-κB (NF-κB) and three mitogen-activated protein kinases (MAPKs), (p38, JNK and ERK) in human articular chondrocytes from normal, osteoarthritis, and rheumatoid arthritis cartilages. Celecoxib at 100 nM reduced the IL-1β-induced productions of MMP-1, MMP-3, iNOS, and NO, whereas indomethacin at 100 nM showed no effect. The additional stimulation of prostaglandin E2 (PGE2) failed to restore those productions, while the production of PGE2 were reduced by 1 and 10 μM but not 100 nM of celecoxib. The inhibitors of NF-κB, JNK and p38, but not ERK, decreased IL-1β-enhanced MMP-1, MMP-3 and NO production, respectively, and 100 nM celecoxib down-regulated the phosphorylation of NF-κB and JNK but has no effect on either p38 or ERK. Celecoxib has inhibitory effects on MMP-1, MMP-3 and NO productions, suggesting the protective roles directly on articular chondrocytes. Despite the COX-2 selectivity, celecoxib affects those productions via not PGE2 but NF-κB and JNK MAPK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Reference

  1. Dieppe PA, Lohmander LS (2005) Pathogenesis and management of pain in osteoarthritis. Lancet 365:965–973

    Article  PubMed  CAS  Google Scholar 

  2. Firestein GS (2003) Evolving concepts of rheumatoid arthritis. Nature 423:356–361

    Article  PubMed  CAS  Google Scholar 

  3. Mengshol JA, Mix KS, Brinckerhoff CE (2002) Matrix metalloproteinases as therapeutic targets in arthritic diseases: bull’s-eye or missing the mark? Arthritis Rheum 46:13–20

    Article  PubMed  CAS  Google Scholar 

  4. Tetlow LC, Adlam DJ, Woolley DE (2001) Matrix metalloproteinase and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage: associations with degenerative changes. Arthritis Rheum 44:585–594

    Article  PubMed  CAS  Google Scholar 

  5. Chakraborti S, Mandal M, Das S, Mandal A, Chakraborti T (2003) Regulation of matrix metalloproteinases: an overview. Mol Cell Biochem 253:269–285

    Article  PubMed  CAS  Google Scholar 

  6. Henrotin YE, Bruckner P, Pujol JP (1999) The role of reactive oxygen species in homeostasis and degradation of cartilage. Osteoarthr Cartil 2003 11:747–755

    Article  Google Scholar 

  7. Penning TD, Talley JJ, Bertenshaw SR, Carter JS, Collins PW, Docter S, Graneto MJ, Lee LF, Malecha JW, Miyashiro JM, Rogers RS, Rogier DJ, Yu SS, Anderson GD, Burton EG, Cogburn JN, Gregory SA, Koboldt CM, Perkins WE, Seibert K, Veenhuizen AW, Zhang YY, Isakson PC (1997) Synthesis and biological evaluation of the 1,5-diarylpyrazole class of cyclooxygenase-2 inhibitors: identification of 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benze nesulfonamide (SC-58635, celecoxib). J Med Chem 40:1347–1365

    Article  PubMed  CAS  Google Scholar 

  8. Hawkey CJ (1999) COX-2 inhibitors. Lancet 353:307–314

    Article  PubMed  CAS  Google Scholar 

  9. Mastbergen SC, Bijlsma JW, Lafeber FP (2005) Selective COX-2 inhibition is favorable to human early and late-stage osteoarthritic cartilage: a human in vitro study. Osteoarthr Cartil 13:519–526

    Article  PubMed  CAS  Google Scholar 

  10. Mastbergen SC, Marijnissen AC, Vianen ME, Zoer B, van Roermund PM, Bijlsma JW, Lafeber FP (2006) Inhibition of COX-2 by celecoxib in the canine groove model of osteoarthritis. Rheumatology 45:405–413

    Article  PubMed  CAS  Google Scholar 

  11. Mastbergen SC, Jansen NW, Bijlsma JW, Lafeber FP (2006) Differential direct effects of cyclo-oxygenase-1/2 inhibition on proteoglycan turnover of human osteoarthritic cartilage: an in vitro study. Arthritis Res Ther 8:R2

    Article  PubMed  Google Scholar 

  12. El Hajjaji H, Marcelis A, Devogelaer JP, Manicourt DH (2003) Celecoxib has a positive effect on the overall metabolism of hyaluronan and proteoglycans in human osteoarthritic cartilage. J Rheumatol 30:2444–2451

    PubMed  CAS  Google Scholar 

  13. Matsuda K, Nakamura S, Matsushita T (2006) Celecoxib inhibits nitric oxide production in chondrocytes of ligament-damaged osteoarthritic rat joints. Rheumatol Int 26:991–995

    Article  PubMed  CAS  Google Scholar 

  14. Vincenti MP, Brinckerhoff CE (2002) Transcriptional regulation of collagenase (MMP-1, MMP-13) genes in arthritis: integration of complex signaling pathways for the recruitment of gene-specific transcription factors. Arthritis Res 4:157–164

    Article  PubMed  CAS  Google Scholar 

  15. Shaulian E, Karin M (2002) AP-1 as a regulator of cell life and death. Nat Cell Biol 4:E131–E136

    Article  PubMed  CAS  Google Scholar 

  16. Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410:37–40

    Article  PubMed  CAS  Google Scholar 

  17. Miyamoto M, Ito H, Mukai S, Kobayashi T, Yamamoto H, Kobayashi M, Maruyama T, Akiyama H, Nakamura T (2003) Simultaneous stimulation of EP2 and EP4 is essential to the effect of prostaglandin E2 in chondrocyte differentiation. Osteoarthr Cartil 11:644–652

    Article  PubMed  CAS  Google Scholar 

  18. Aoyama T, Liang B, Okamoto T, Matsusaki T, Nishijo K, Ishibe T, Yasura K, Nagayama S, Nakayama T, Nakamura T, Toguchida J (2005) PGE2 signal through EP2 promotes the growth of articular chondrocytes. J Bone Miner Res 20:377–389

    Article  PubMed  CAS  Google Scholar 

  19. Nakagawa T, Yasuda T, Hoshikawa H, Shimizu M, Kakinuma T, Chen M, Masaki T, Nakamura T, Sawamura T (2002) LOX-1 expressed in cultured rat chondrocytes mediates oxidized LDL-induced cell death-possible role of dephosphorylation of Akt. Biochem Biophys Res Commun 299:91–97

    Article  PubMed  CAS  Google Scholar 

  20. Kleemann RU, Krocker D, Cedraro A, Tuischer J, Duda GN (2005) Altered cartilage mechanics and histology in knee osteoarthritis: relation to clinical assessment (ICRS Grade). Osteoarthr Cartil 13:958–963

    Article  PubMed  CAS  Google Scholar 

  21. Yasuda T, Poole AR (2002) A fibronectin fragment induces type II collagen degradation by collagenase through an interleukin-1-mediated pathway. Arthritis Rheum 46:138–148

    Article  PubMed  CAS  Google Scholar 

  22. Hiramitsu T, Yasuda T, Ito H, Shimizu M, Julovi SM, Kakinuma T, Akiyoshi M, Yoshida M, Nakamura T (2006) Intercellular adhesion molecule-1 mediates the inhibitory effects of hyaluronan on interleukin-1β-induced matrix metalloproteinase production in rheumatoid synovial fibroblasts via down-regulation of NF-κB and p38. Rheumatology 45:824–832

    Article  PubMed  CAS  Google Scholar 

  23. Sadowski T, Steinmeyer J (2001) Minocycline inhibits the production of inducible nitric oxide synthase in articular chondrocytes. J Rheumatol 28:336–340

    PubMed  CAS  Google Scholar 

  24. Labarca C, Paigen K (1980) A simple, rapid, and sensitive DNA assay procedure. Anal Biochem 102:344–352

    Article  PubMed  CAS  Google Scholar 

  25. Solomon DH, Avorn J, Sturmer T, Glynn RJ, Mogun H, Schneeweiss S (2006) Cardiovascular outcomes in new users of coxibs and nonsteroidal antiinflammatory drugs: high-risk subgroups and time course of risk. Arthritis Rheum 54:1378–1389

    Article  PubMed  CAS  Google Scholar 

  26. Huang WF, Hsiao FY, Tsai YW, Wen YW, Shih YT (2006) Cardiovascular events associated with long-term use of celecoxib, rofecoxib and meloxicam in Taiwan : an observational study. Drug Saf 29:261–272

    Article  PubMed  CAS  Google Scholar 

  27. Singh G, Fort JG, Goldstein JL, Levy RA, Hanrahan PS, Bello AE, Andrade-Ortega L, Wallemark C, Agrawal NM, Eisen GM, Stenson WF, Ttriadafilopoulos G; SUCCESS-I Investigators (2006) Celecoxib versus naproxen and diclofenac in osteoarthritis patients: SUCCESS-I Study. Am J Med 119:255–266

  28. Cha HS, Ahn KS, Jeon CH, Kim J, Koh EM (2004) Inhibitory effect of cyclo-oxygenase-2 inhibitor on the production of matrix metalloproteinases in rheumatoid fibroblast-like synoviocytes. Rheumatol Int 24:207–211

    Article  PubMed  CAS  Google Scholar 

  29. Yasuda T, Poole AR (2002) A fibronectin fragment induces type II collagen degradation by collagenase through an interleukin-1-mediated pathway. Arthritis Rheum 46:138–148

    Article  PubMed  CAS  Google Scholar 

  30. Yasuda T, Tchetina E, Ohsawa K, Roughley PJ, Wu W, Mousa A, Ionescu M, Pidoux I, Poole AR (2006) Peptides of type II collagen can induce the cleavage of type II collagen and aggrecan in articular cartilage. Matrix Biol 25:419–429

    Article  PubMed  CAS  Google Scholar 

  31. Nakamura H, Masuko K, Yudoh K, Kato T, Nishioka K (2007) Effects if celecoxib on human chondrocytes—enchanced production of chemokines. Clin Exp Rheumatol 25:11–16

    PubMed  CAS  Google Scholar 

  32. Tegeder I, Pfeilschifter J, Geisslinger G (2001) Cyclooxygenase-independent actions of cyclooxygenase inhibitors. FASEB J 15:2057–2072

    Article  PubMed  CAS  Google Scholar 

  33. Zhang X, Morham SG, Langenbach R, Young DA (1999) Malignant transformation and antineoplastic actions of nonsteroidal antiinflammatory drugs (NSAIDs) on cyclooxygenase-null embryo fibroblasts. J Exp Med 190:451–459

    Article  PubMed  CAS  Google Scholar 

  34. Takada Y, Bhardwaj A, Potdar P, Aggarwal BB (2004) Nonsteroidal anti-inflammatory agents differ in their ability to suppress NF-kappaB activation, inhibition of expression of cyclooxygenase-2 and cyclin D1, and abrogation of tumor cell proliferation. Oncogene 23:9247–9258

    PubMed  CAS  Google Scholar 

  35. Sperandio da Silva GM, Lima LM, Fraga CA, Sant’Anna CM, Barreiro EJ (2005) The molecular basis for coxib inhibition of p38alpha MAP kinase. Bioorg Med Chem Lett 15:3506–3509

    Article  PubMed  CAS  Google Scholar 

  36. Steffel J, Hermann M, Greutert H, Gay S, Luscher TF, Ruschitzka F, Tanner FC (2005) Celecoxib decreases endothelial tissue factor expression through inhibition of c-Jun terminal NH2 kinase phosphorylation. Circulation 111:1685–1689

    Article  PubMed  CAS  Google Scholar 

  37. Hou CC, Hung SL, Kao SH, Chen TH, Lee HM (2005) Celecoxib induces heme-oxygenase expression in glomerular mesangial cells. Ann N Y Acad Sci 1042:235–245

    Article  PubMed  CAS  Google Scholar 

  38. Takahashi T, Ogawa Y, Kitaoka K, Tani T, Uemura Y, Taguchi H, Kobayashi T, Seguchi H, Yamamoto H, Yoshida S (2005) Selective COX-2 inhibitor regulates the MAP kinase signaling pathway in human osteoarthritic chondrocytes after induction of nitric oxide. Int J Mol Med 15:213–219

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Drs. Tomoki Aoyama and Hiroyuki Yoshitomi for their valuable helps and thoughtful discussions. The authors also thank Drs. Yasuaki Nakagawa and Masahiko Kobayashi for helping the cartilage retrieval.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsutsumi, R., Ito, H., Hiramitsu, T. et al. Celecoxib inhibits production of MMP and NO via down-regulation of NF-κB and JNK in a PGE2 independent manner in human articular chondrocytes. Rheumatol Int 28, 727–736 (2008). https://doi.org/10.1007/s00296-007-0511-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-007-0511-6

Keywords

Navigation