Skip to main content
Log in

Effect of exogenous calcium on post-thaw growth recovery and subsequent plant regeneration of cryopreserved embryogenic calli of Hevea brasiliensis (Müll. Arg.)

  • Cell Biology and Morphogenesis
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

A reliable cryopreservation technique was developed for friable embryogenic callus lines of Hevea brasiliensis. The study showed that reducing the CaCl2 concentration of the pre-culture medium from 9 mM to 1 or 0 mM CaCl2 before cryopreservation promoted post-thaw callus growth, 1 mM being the optimum CaCl2 concentration for embryo regeneration. Post-thaw callus proliferation decreased in line with the increase of plated callus weight. The effect of cryopreservation was assessed on 39 independent lines showing that cryopreservation did not affect embryogenic and plant regeneration for a majority of lines. The decrease in CaCl2 concentration of the pre-culture medium led to a drop in callus calcium content indicating a direct link between the CaCl2 concentration of the pre-culture medium and the endogenous calcium content of the calli. It also highlighted the implication of tissue calcium content in cryotolerance. Callus water status and the different ways by which calcium could prevent cryoinjury is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

MH:

Basal medium for hevea culture

3,4-D:

3,4-Dichlorophenoxyacetic acid

KIN:

Kinetin

MM:

Maintenance medium

BA:

N6-Benzyladenine

ABA:

Abscisic acid

IM:

Induction medium

DM:

Development medium

GER:

Germination medium

MS:

Murashige and Skoog medium

DMSO:

Dimethylsulphoxide

WC:

Water content

FW:

Fresh weight

DW:

Dry weight

ψ W :

Water potential

ψ Π :

Osmotic potential

ψ P :

Pressure potential

References

  • Abraham A, De Antoni GL, Anõn MC (1990) Effect of calcium on the cryopreservation of Lactobacillus bulgaricus in different freezing media. Cryobiology 27:336–342

    Article  Google Scholar 

  • Benson EE (1999) Cryopreservation. In: Benson EE (ed) Plant conservation biotechnology. Taylor and Francis, London, pp 83–107

    Google Scholar 

  • Benson EE, Lynch PT, Jones J (1992) The detection of lipid peroxidation products in cryoprotected and frozen rice cells: consequence for post-thaw survival. Plant Sci 85:107–114

    Article  CAS  Google Scholar 

  • Blanc G, Michaux-Ferrière N, Teisson C, Lardet L, Carron MP (1999) Effects of carbohydrate addition on the induction of somatic embryogenesis in Hevea brasiliensis. Plant Cell Tissue Organ Cult 59:103–112

    Article  CAS  Google Scholar 

  • Blanc G, Baptiste C, Oliver G, Martin F, Montoro P (2006) Efficient Agrobacterium tumefaciens-mediated transformation of embryogenic calli and regeneration of Hevea brasiliensis Müll Arg. Plants. Plant Cell Rep 24:724–733

    Article  PubMed  CAS  Google Scholar 

  • Carron MP, Enjalric F, Lardet L, Deschamps A (1989) Rubber (Hevea brasiliensis Müll. Arg.). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 5, Trees II. Springer Verlag, Berlin, Heidelberg, pp 222–245

    Google Scholar 

  • Carron MP, Etienne H, Michaux-Ferrière N, Montoro P (1995) Somatic embryogenesis in rubber trees (Hevea brasiliensis Müll. Arg.). In: Bajaj YPS (ed) Biotehnology in agriculture and forestry, vol 30, “Somatic embryogenesis and synthetic seed I”. Spinger-Verlag, Berlin, Heidelberg 3(8):353–369

  • Carron MP, Lardet L, Dea BG (1998) Micropropagation de l’hévéa par embryogenèse somatique. Plantation, Recherche, Développement 5(3):187–192

    Google Scholar 

  • Cassells AC, Morrish FM (1987) Variation in adventitious regenerants of Begonia rex Putz. Lucille Closon as a consequence of cell ontogeny, callus ageing and frequency of subculture. Sci Hortic 32:135–144

    Article  Google Scholar 

  • Côte FX, Teisson C, Perrier X (2001) Somaclonal variation rate evolution in plant tissue culture: contribution to understanding through a statistical approach. In Vitro Cell Dev Biol Plant 37:539–542

    Article  Google Scholar 

  • Danso KE, Ford-Lloyd BV (2004) Cryopreservation of embryogenic calli of cassava using sucrose cryoprotection and air desiccation. Plant Cell Rep 22:623–631

    Article  PubMed  CAS  Google Scholar 

  • Engelmann F, Lartaud M, Chabrillange N, Carron MP, Etienne H (1997) Cryopreservation of embryogenic calluses of two commercial clones of Hevea brasiliensis. Cryo Lett 18:107–116

    Google Scholar 

  • Etienne H, Berger A, Carron MP (1991) Water status of callus from Hevea brasiliensis during induction of somatic embryogenesis. Physiol Plant 82:213–218

    Article  Google Scholar 

  • Etienne H, Lartaud M, Carron MP, Michaux-Ferrière N (1997) Use of calcium to optimize long term proliferation of friable embryogenic calluses and plant regeneration in Hevea brasiliensis (Müll. Arg.). J Exp Bot 48:129–137

    Article  CAS  Google Scholar 

  • Find JI, Kristensen MMH, Nørgaard JV, Krogstrup P (1998) Effect of culture period and cell density on regrowth following cryopreservation of embryogenic suspension cultures of Norway spruce and Sitka spruce. Plant Cell Tissue Organ Cult 53:27–33

    Article  Google Scholar 

  • Fleck RA, Benson EE, Bremmer DH, Day JG (2003) A comparative study of antioxidant protection in cryopreservation unicellular algae Euglena gracilis and Haematococcus pluviatilis. Cryo Lett 24:213–228

    CAS  Google Scholar 

  • Grout BWW (1995) Cryopreservation of protoplast, suspension and callus cultures. In: Grout BWW (ed) Genetic preservation of plant cells in vitro. Spinger-Verlag, Berlin, Heidelberg, New York, pp 29–46

    Google Scholar 

  • Hargreaves CL, Grace LJ, Holden DG (2002) Nurse culture for efficient recovery of cryopreserved Pinus radiata D. Don embryogenic cell lines. Plant Cell Rep 21:40–45

    Article  CAS  Google Scholar 

  • Kristensen MMH, Find JL, Floto F, Møller JD, Nørgaard JVN, Krogstrup P (1994) The origin and development of somatic embryos following cryopreservation of an embryogenic suspension culture of Picea sitchensis. Protoplasma 182:65–70

    Article  Google Scholar 

  • Lardet L, Piombo G, Oriol M, Dechamp E, Carron MP (1999) Relations between biochemical characteristics and conversion ability in Hevea brasiliensis zygotic and somatic embryos. Can J Bot 77:1168–1177

    Article  CAS  Google Scholar 

  • Mari S, Engelmann F, Chabrillange N, Huet C, Michaux-Ferrière N (1995) Histo-cytological study of apices of coffee (Coffea racemosa and C. sessiflora) in vitro plantlets during their cryopreservation using the encapsulation-dehydration technique. Cryo Lett 16:289–298

    Google Scholar 

  • Martinez MT, Ballester A, Vieitez AM (2003) Cryopreservation of embryogenic cultures of Quercus robur using desiccation and vitrification procedures. Cryobiology 46:182–189

    Article  PubMed  CAS  Google Scholar 

  • Mathur G, Alkutkar VA, Nadgauda RS (2003) Cryopreservation of embryogenic culture of Pinus roxburghii. Biol Plant 46:205–210

    Article  Google Scholar 

  • Mendanha ABL, Almeida Torres (de) RA, Barros Freire (de) A (1998) Micropropagation of rubber trees (Hevea brasiliensis Muell. Arg). Genet Molec Biol 21:395–398

    Google Scholar 

  • Montoro P, Etienne H, Carron MP, Nougarède A (1992) Incidence des cytokinines sur l’induction de l’embryogenèse et la qualité des embryons somatiques chez Hevea brasiliensis Müll. Arg. C. R. Acad. Sci. Paris, t. 315, Série III: 567–574

  • Montoro P, Etienne H, Michaux-Ferrière N, Carron MP (1993) Callus friability and somatic embryogenesis in Hevea brasiliensis. Plant Cell Tissue Organ Cult 33:331–338

    Article  CAS  Google Scholar 

  • Montoro P, Etienne H, Carron MP (1995) Effect of calcium on callus-friability and somatic embryogenesis in Hevea brasiliensis Müll. Arg.: relations with callus mineral nutrition, nitrogen metabolism and water parameters. J Exp Bot 46:255–261

    Article  CAS  Google Scholar 

  • Montoro P, Teinseree N, Rattana W, Kongsawadworakul P, Michaux-Ferrière N (2000) Effect of exogenous calcium on Agrobacterium tumefaciens-mediated gene transfer in Hevea brasiliensis (rubber tree) friable calli. Plant Cell Rep 19:851–855

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth on bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Mycock D (1999) Addition of calcium and magnesium to a glycerol and sucrose cryoprotectant solution improves the quality of plant embryo recovery from cryostorage. Cryo Lett 20:77–82

    CAS  Google Scholar 

  • Overvoorde PJ, Grimes HD (1994) The role of calcium and calmodulin in carrot somatic embryogenesis. Plant Cell Physiol 35:135–144

    CAS  Google Scholar 

  • Panis B, Thinh NT (2001) Cryopreservation of Musa germplasm. INIBAP technical guidelines, vol 5. International Network for the Improvement of Banana and Plantain, Montpellier, pp 13–16

  • Pinta M (1973) Méthodes de référence pour la détermination des éléments minéraux dans les végétaux – Oléagineux 28:87–92

  • Sushamakumari S, Asokan MP, Anthony P, Lowe KC, Power JB, Davey MR (2000) Plant regeneration from embryogenic cell suspension-derived protoplasts of rubber. Plant Cell Tissue Organ Cult 61:81–85

    Article  CAS  Google Scholar 

  • Sussex IM, Frei KA (1968) Embryoid development in long-term tissue cultures of carrot. Phytomorphology 18:339–349

    CAS  Google Scholar 

  • Turner S, Senarata T, Touchel D, Bunn E, Dixon K, Tan B (2001) Stereochemical arrangement of hydroxyl groups in sugars and polyalcohol molecules as an important factor in effective cryopreservation. Plant Sci 160:489–497

    Article  PubMed  CAS  Google Scholar 

  • Umeshita K, Monden M, Fulimori T, Sakai H, Gotoh M, Okamura J, Mori T (1988) Extracellular calcium protects cultured rat hepatocytes from injury caused by hypothermic preservation. CryoBiology 25:102–109

    Article  PubMed  CAS  Google Scholar 

  • Veisseire P, Guerrier J, Coudret A (1993) Cryopreservation of embryogenic cell suspension of Hevea brasiliensis. Cryo Lett 14:295–302

    Google Scholar 

  • Wang Z, Wu H, Chen X (1998) Effects of alternated temperatures on plant regeneration frequencies in stamen culture of rubber trees. J Trop Subtrop Bot 6:166–168

    Google Scholar 

  • Winkelmann T, Mußmann V, Serek M (2004) Cryopreservation of embryogenic suspension cultures of Cyclamen persicum Mill. Plant Cell Rep 23:1–8

    Article  PubMed  CAS  Google Scholar 

  • Yang T, Poovaiah BW (2002) Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. Proc Natl Acad Sci USA 99:4097–4102

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Tabei Y, Kamada H, Kayano T, Takaiwa F (1999) Detection of somaclonal variation in cultured rice cells using digoxigenin-based random amplified polymorphic DNA. Plant Cell Rep 18:520–526

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out under a research agreement on mass propagation of Hevea using in vitro culture between CIRAD and Michelin. Our sincere thanks to the Michelin Company, and more particularly to Dr. Josiane Julien, Head of the Cell Biology Laboratory, for supplying calli of line VP10 and a photograph of rubber trees in a field. We would also like to thank Gisèle Llimous from the CIRAD AMIS Department for the mineral analysis and Dr. Nicole Ferrière for careful reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludovic Lardet.

Additional information

Communicated by P. Debergh

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lardet, L., Martin, F., Dessailly, F. et al. Effect of exogenous calcium on post-thaw growth recovery and subsequent plant regeneration of cryopreserved embryogenic calli of Hevea brasiliensis (Müll. Arg.). Plant Cell Rep 26, 559–569 (2007). https://doi.org/10.1007/s00299-006-0278-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-006-0278-3

Keywords

Navigation