Skip to main content

Advertisement

Log in

Microarray analysis of apple gene expression engaged in early fruit development

  • Cell Biology and Morphogenesis
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

To evaluate gene expressions mostly engaged in early development of apple fruit, we performed the identification of transcripts differentially expressed in young fruit by using microarrays spotted with 6,253 cDNAs collected from young and mature apple fruits of the cultivar Fuji (Malus domestica Borkh. cv. Fuji). A total of 3,484 cDNAs out of 6,253 were selected after quality control of microarray spots and analyzed for differential gene expression patterns between young fruit and other tissues (mature fruit, leaf and flower). Among them, 192 cDNAs displayed a signal value higher than twofold in young fruit compared with other tissues. Blast analysis of the 192 cDNA clones identified 88 non-redundant groups encoding proteins with known function and 50 non-redundant groups with unknown function. The putative protein products were classified into the following categories: photosynthesis (16.7%), protein synthesis (12.3%), cell proliferation and differentiation (10.9%), cell enlargement (5.8%), metabolism (8.0%), stress response (7.2%), others (2.9%), and unknown functions (32.2%). Furthermore, confirming the microarray data by reverse transcription-polymerase chain reaction revealed that the wide range of transcripts differentially expressed in young fruit was expressed in other organs but not in the mature fruit. The data presented suggested that apple fruit development depends on the tight regulation of the expression of a number of genes, which are also expressed in other organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aharoni A, O’Connell AP (2002) Gene expression analysis of strawberry achene and receptacle maturation using DNA microarrays. J Exp Bot 53:2073–2087

    Article  PubMed  CAS  Google Scholar 

  • Arend M, Stinzing A, Wind C, Langer K, Latz A, Ache P, Fromm J, Hedrich R (2005) Polar-localised poplar K+ channel capable of controlling electrical properties of wood-forming cells. Planta 223:140–148

    Article  PubMed  CAS  Google Scholar 

  • Biale JB (1964) Growth, maturation and senescence in fruits. Science 146:880–888

    Article  CAS  PubMed  Google Scholar 

  • Callis J, Raasch JA, Vierstra RD (1990) Ubiquitin extension proteins of Arabidopsis thaliana. Structure, localization, and expression of their promoters in transgenic tobacco. J Biol Chem 265:12486–12493

    PubMed  CAS  Google Scholar 

  • Campalans A, Pages M, Messeguer R (2001) Identification of differentially expressed genes by the cDNA-AFLP technique during dehydration of almond (Prunus amygdalus). Tree Physiol 21:633–643

    PubMed  CAS  Google Scholar 

  • Cuzin M (2001) DNA chips: a new tool for genetic analysis and diagnostics. Trnasfus Clin Biol 8:291–296

    Article  CAS  Google Scholar 

  • Dennis FG (1986) Apple. In: Moselise SP (ed) Handbook of fruit set and development. CRC, Boca Raton, pp 1–44

    Google Scholar 

  • Dong Y-H, Janssen B-J, Bieleski LRF, Atkinson RG, Morris BAM, Gardner RC (1997) Isolating and characterizing genes differentially expressed early in apple fruit development. J Am Soc Hort Sci 122:752–757

    CAS  Google Scholar 

  • Dong Y-H, Kvarnheden A, Yao J-L, Sutherland PW, Atkinson RG, Morris BAM, Gardner RC (1998) Identification of pollination-induced genes from the ovary of apple (Malus domestica). Sex Plant Reprod 11:277–283

    Article  CAS  Google Scholar 

  • Duggan DJ, Bittner M, Chen Y, Meltzer P, Trent JM (1999) Expression profiling using cDNA microarrays. Nat Genet 21:10–14

    Article  PubMed  CAS  Google Scholar 

  • Gao ZS, van de Weg WE, Schaart JG, van der Meer IM, Kodde L, Laimer M, Breiteneder H, Hoffmann-Sommergruber K, Gilissen LJ (2005) Linkage map positions and allelic diversity of two Mal d 3 (non-specific lipid transfer protein) genes in the cultivated apple (Malus domestica). Theor Appl Genet 110:479–491

    Article  PubMed  CAS  Google Scholar 

  • Gillaspy G, Ben-David H, Gruissem W (1993) Fruit: a developmental perspective. Plant Cell 5:1439–1451

    Article  PubMed  Google Scholar 

  • Ito T, Kim GT, Shinozaki K (2000) Disruption of an Arabidopsis cytoplasmic ribosomal protein S13-homologous gene by transposon-mediated mutagenesis causes aberrant growth and development. Plant J 22:257–264

    Article  PubMed  CAS  Google Scholar 

  • Joanin P, Gigot C, Phillips G (1993) cDNA nucleotide sequence and expression of a maize cytoplasmic ribosomal protein S13 gene. Plant Mol Biol 21:701–704

    Article  PubMed  CAS  Google Scholar 

  • John ME, Crow LJ (1992) Gene expression in cotton (Gossypium hirsutum L.) fiber: cloning of the mRNAs. Proc Natl Acad Sci USA 89:5769–5773

    Article  PubMed  CAS  Google Scholar 

  • Kende H, Bradford K, Brummell D, Cho HT, Cosgrove D, Fleming A, Gehring C, Lee Y, McQueen-Mason S, Rose J, Voesenek LA (2004) Nomenclature for members of the expansin superfamily of genes and proteins. Plant Mol Biol 55:311–314

    Article  PubMed  CAS  Google Scholar 

  • Koning AJ, Tanimoto EY, Kiehne K, Rost T, Comai L (1991) Cell-specific expression of plant histone H2A genes. Plant Cell 3:657–665

    Article  PubMed  CAS  Google Scholar 

  • König R, Baldessari D, Pollet N, Niehrs C, Eils R (2004) Reliability of gene expression ratios for cDNA microarrays in multiconditional experiments with a reference design. Nucleic Acids Res 32:e29

    Article  PubMed  CAS  Google Scholar 

  • Lemaire-Chamley M, Petit J, Garcia V, Just D, Baldet P, Germain V, Fagard M, Mouassite M, Cheniclet C, Rothan C (2005) Changes in transcriptional profiles are associated with early fruit tissue specialization in tomato. Plant Physiol 139:750–769

    Article  PubMed  CAS  Google Scholar 

  • Ludevid D, Hofte H, Himelblau E, Chrispeels MJ (1992) The expression pattern of the tonoplast intrinsic protein γ-TIP in Arabidopsis thaliana is correlated with cell enlargement. Plant Physiol 100:1633–1639

    PubMed  CAS  Google Scholar 

  • Maurel C, Chrespeels MJ (2001) Aquaporins. A molecular entry into plant water relations. Plant Physiol 125:135–138

    Article  PubMed  CAS  Google Scholar 

  • Moyle R, Fairbairn DJ, Ripi J, Crowe M, Botella JR (2005) Developing pineapple fruit has a small transcriptome dominated by metallothionin. J Exp Bot 56:101–112

    PubMed  CAS  Google Scholar 

  • Newcomb RD, Crowhurst RN, Gleave AP, Rikkerink EH, Allan AC, Beuning LL, Bowen JH, Gera E, Jamieson KR, Janssen BJ, Laing WA, McArtney S, Nain B, Ross GS, Snowden KC, Souleyre EJ, Walton EF, Yauk YK (2006) Analyses of expressed sequence tags from apple. Plant Physiol 141:147–166

    Article  PubMed  Google Scholar 

  • Pastorello EA, Pompei C, Pravettoni V, Brenna O, Farioli L, Trambaioli C, Conti A (2001) Lipid transfer proteins and 2S albumins as allergens. Allergy 67:45–47

    Article  Google Scholar 

  • Percy AE, O’Brien IEW, Jameson PE, Melton LD, MacRae EA, Redgewell RJ (1996) Xyloglucan endotransglycosylase activity during fruit development and ripening of apple and kiwifruit. Physiol Plant 96:43–50

    Article  CAS  Google Scholar 

  • Piechulla B, Pichersky E, Cashmore A, Gruissem W (1986) Expression of nuclear and plastid genes for photosynthesis-specific proteins during tomato fruit development and ripening. Plant Mol Biol 7:367–376

    Article  CAS  Google Scholar 

  • Piechulla B, Glick R, Bahl H, Melis A, Gruissem W (1987) Changes in photosynthetic capacity and photosynthetic protein pattern during tomato fruit ripening. Plant Physiol 84:911–917

    Article  PubMed  CAS  Google Scholar 

  • Rohrer JR, Robertson KR, Phipps JB (1991) Variation in structure among fruits of Maloideae (Rosaceae). Am J Bot 78:1617–1635

    Article  Google Scholar 

  • Ruan Y, Gilmore J, Conner T (1998) Towards Arabidopsis genome analysis: monitoring expression profiles of 1400 genes using cDNA microarrays. Plant J 15:821–833

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor, New York

    Google Scholar 

  • Schena M, Shalon D, Heller R, Chai A, Brown PO, Davis RW (1996) Parallel human genome analysis: microarray based expression monitoring of 1000 genes. Proc Natl Acad Sci USA 93:10614–10619

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13:61–72

    Article  PubMed  CAS  Google Scholar 

  • Singh AK, McIntyre LM, Sherman LA (2003) Microarray analysis of the genome-wide response to iron deficiency and iron reconstitution in the Cyanobacterium, Synechocystis sp. PCC 6803. Plant Physiol 132:1825–1839

    Article  PubMed  CAS  Google Scholar 

  • Sugita M, Gruissem W (1987) Developmental, organ-specific, and light-dependent expression of the tomato ribulose-1,5-bisphosphate carboxylase small subunit gene family. Proc Natl Acad Sci USA 84:7104–7108

    Article  PubMed  CAS  Google Scholar 

  • Szick K, Springer M, Bailey-Serres J (1998) Evolutionary analyses of the 12-kDa acidic ribosomal P-proteins reveal a distinct protein of higher plant ribosomes. Proc Natl Acad Sci USA 95:2378–2383

    Article  PubMed  CAS  Google Scholar 

  • Tsugeki R, Kochieva EZ, Fedoroff NV (1996) A transposon insertion in the Arabidopsis SSR16 gene causes an embryo-defective lethal mutation. Plant J 10:479–489

    Article  PubMed  CAS  Google Scholar 

  • Van Lijsebettens M, Vanderhaeghen R, De Block M, Bauw G, Villarroel R, Van Montagu M (1994) An S18 ribosomal protein gene copy at the Arabidopsis PFL locus affects plant development by its specific expression in meristems. EMBO J 13:3378–3388

    PubMed  Google Scholar 

  • Wanner L, Gruissem W (1991) Expression dynamics of the tomato rbcS gene family during development. Plant Cell 3:1289–1303

    Article  PubMed  CAS  Google Scholar 

  • Zurek DM, Clouse SD (1994) Molecular cloning and characterization of a brassinosteroid-regulated gene from elongating soybean (Glycine max L.) epicotyls. Plant Physiol 104:161–170

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from BioGreen21 Program, Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon-Kee Sung.

Additional information

Communicated by J.R. Liu.

Young-Pyo Lee and Gyung-Hee Yu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, YP., Yu, GH., Seo, Y.S. et al. Microarray analysis of apple gene expression engaged in early fruit development. Plant Cell Rep 26, 917–926 (2007). https://doi.org/10.1007/s00299-007-0308-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-007-0308-9

Keywords

Navigation