Skip to main content

Advertisement

Log in

Transgenic tobacco plants overexpressing the heterologous lea gene Rab16A from rice during high salt and water deficit display enhanced tolerance to salinity stress

  • Physiology and Biochemistry
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

The full length Rab16A, from the indica rice Pokkali, was introduced into tobacco by Agrobacterium-mediated transformation. The transgene was stably integrated into the genome and they originated from different lines of integration. Expression of Rab16A transcript driven by its own promoter (stress inducible) in T2 progenies, only when triggered by salinity/ABA/PEG (Polyethylene glycol)-mediated dehydration, but not at the constitutive level, led to the stress-induced accumulation of RAB16A protein in the leaves of transgenic plants. The selected independent transgenic lines showed normal growth, morphology and seed production as the WT plants without any yield penalty under stress conditions. They exhibited significantly increased tolerance to salinity, sustained growth rates under stress conditions; with concomitant increased osmolyte production like reducing sugars, proline and higher polyamines. They also showed delayed development of damage symptoms with better antioxidative machinery and more favorable mineral balance, as reflected by reduced H2O2 levels and lipid peroxidation, lesser chlorophyll loss as well as lesser accumulation of Na+ and greater accumulation of K+ in 200 mM NaCl. These findings establish the potential role of Rab16A gene in conferring salt tolerance without affecting growth and yield, as well as pointing to the fact that the upstream region of Rab16A behaves as an efficient stress-inducible promoter. Our result also suggests the considerable potential of Group 2 lea genes as molecular tools for genetic engineering of plants towards stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

EMSA:

Electrophoretic mobility shift assay

LEA:

Late embryogenesis abundant

LOX:

Lipoxygenase

MDA:

Malondialdehyde

ORF:

Open reading frame

PEG:

Polyethylene glycol

Rab:

Responsive to abscisic acid

RWC:

Relative water content

WT:

Wild type

References

  • An G (1987) Binary T1 vectors for plant transformation and promoter analysis. Method Enzymol 153:292–293

    Article  CAS  Google Scholar 

  • Anderson MD, Prasad TK, Stewart CR (1995) Changes in isozyme profiles of catalase, peroxidase and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings. Plant Physiol 109:1247–1257

    PubMed  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  PubMed  CAS  Google Scholar 

  • Baker J, Steele C, Dure L (1988) Sequence and characterization of 6 Lea proteins and their genes from cotton. Plant Mol Biol 11:277–91

    Article  CAS  Google Scholar 

  • Barroso C, Luis CR, Cejudo FJ, Vega JM, Gotor C (1999) Salt-specific regulation of the cytosolic O-acetylserine (thiol) lyase gene from Arabidopsis thaliana is dependent on abscisic acid. Plant Mol Biol 40:729–736

    Article  PubMed  CAS  Google Scholar 

  • Bartels D, Salamani F (2001) Desiccation tolerance in the resurrection plant Craterostigma plantagineum. A contribution to the study of drought tolerance at the molecular level. Plant Physiol 127:1346–1353

    Article  PubMed  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Benavides MP, Marconi PL, Gallego SM, Comba ME, Tomaro ML (2000) Relationship between antioxidant defense system and salt tolerance in Solanum tuberosum. Aust J Plant Physiol 27:273–278

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein using the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Bray EA (1993) Molecular responses to water deficit. Plant Physiol 103:1035–1040

    PubMed  CAS  Google Scholar 

  • Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97:795–803

    Article  CAS  Google Scholar 

  • Close TJ, Fenton RD, Moonan F (1993) A view of plant dehydrins using antibodies specific to the carboxy terminal peptide. Plant Mol Biol 23:279–286

    Article  PubMed  CAS  Google Scholar 

  • Cuin TA, Shabala S (2007) Amino acids regulate salinity-induced potassium efflux in barley root epidermis. Planta 225:753–761

    Article  PubMed  CAS  Google Scholar 

  • Dhindsa RS, Matowe W (1981) Drought tolerance in two mosses correlated with enzymatic defense against lipid peroxidation. J Exp Bot 22:79–91

    Article  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought, high salt and cold responsive gene expression. Plant J 33:751–763

    Article  PubMed  CAS  Google Scholar 

  • Egert M, Tevini M (2002) Influence of drought on some physiological parameters symptomatic for oxidative stress in leaves of chives (Allium schoenoprasum). Environ Exp Bot 48:43–49

    Article  CAS  Google Scholar 

  • Flowers TJ, Flowers SA, Greenway H (1986) Effects of sodium chloride on tobacco plants. Plant Cell Environ 9:645–651

    Article  CAS  Google Scholar 

  • Floyd RA, Nagy ZS (1984) Formation of long lived hydroxyl free radical adducts of proline and hydroxyl-proline in a Fenton reaction. Biochim Biophys Acta 790:94–97

    PubMed  CAS  Google Scholar 

  • Fu J, Huang B (2001) Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localizated drought stress. Environ Exp Bot 45:105–114

    Article  PubMed  CAS  Google Scholar 

  • Gaitonde MK (1967) A spectrophotometric method for direct determination of cysteine in the presence of other naturally occurring amino acids. Biochem J 104:627–633

    PubMed  CAS  Google Scholar 

  • Garcia AB, Engler J, Iyer S, Gerats T, Van Montagu M, Caplan AB (1997) Effects of osmoprotectants upon NaCl stress in rice. Plant Physiol 115:159–169

    PubMed  CAS  Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA 99:15898–15903

    Article  PubMed  CAS  Google Scholar 

  • Grover A, Kapoor A, Lakshmi OS, Agarwal S, Sahi C, Agarwal SK, Agarwal M, Dubey H (2001) Understanding the molecular alphabets of the plant abiotic stress responses. Curr Sci 80:206–216

    CAS  Google Scholar 

  • Gupta S, Chattopadhyay MK, Chatterjee P, Ghosh B, Sengupta DN (1998) Expression of abscisic acid–responsive element-binding protein in salt-tolerant Indica rice (Oryza sativa L. cv. Pokkali). Plant Mol Biol 37:629–637

    Article  PubMed  CAS  Google Scholar 

  • Hamilton RH, Kunsch U, Temperli A (1972) Simple rapid procedures for isolation of tobacco leaf nuclei. Anal Biochem 49:48–57

    Article  PubMed  CAS  Google Scholar 

  • Hara M, Terashima S, Fukaya T, Kuboi T (2003) Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217:290–298

    PubMed  CAS  Google Scholar 

  • Hara M, Fujinaga M, Kuboi T (2004) Radical scavenging activity and oxidative modification of citrus dehydrin. Plant Physiol Biochem 42:657–662

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  PubMed  CAS  Google Scholar 

  • Hong ZL, Lakkineni K, Zhang ZM, Verma DPS (2000) Removal of feedback inhibition of DELTA1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136

    Article  PubMed  CAS  Google Scholar 

  • Horsch RB, Fry J, Hoffmann N, Niedermeyer J, Rogers SG, Fraley TF (1988) Leaf disc transformation. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual. Kluwer, Dordrecht, pp 1–9

    Google Scholar 

  • Irigoyen JJ, Emerich DW, Sanchez-Diaz M (1992) Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiol Plant 84:55–60

    Article  CAS  Google Scholar 

  • Ithal N, Reddy AR (2004) Rice flavonoid pathway genes, OsDfr and OsAns, are induced by dehydration, high salt and ABA, and contain stress responsive promoter elements that interact with the transcription activator, OsC1-MYB. Plant Sci 166:1505–1513

    Article  CAS  Google Scholar 

  • Koetsier PA, Schorr J, Doerfler W (1993) A rapid optimized protocol for download alkaline Southern blotting of DNA. Biotechniques 15:260–262

    PubMed  CAS  Google Scholar 

  • Longhurst T, Lee E, Hinde R, Brady C, Speirs J (1994) Structure of the tomato Adh2 gene and Adh2 pseudogenes, and a study of Adh2 gene expression in fruit. Plant Mol Biol 26:1073–1084

    Article  PubMed  CAS  Google Scholar 

  • Mattana M, Biazzi E, Consonni R, Locatelli F, Vanini C, Provera S, Coraggio I (2005) Overexpression of Osmyb4 enhances compatible solute accumulation and increases stress tolerance of Arabidopsis thaliana. Physiol Plant 125:212–223

    Article  CAS  Google Scholar 

  • Minguez-Mosquera MI, Jaren-Galen M, Garrido-Fernandez J (1993) Lipoxygenase activity during pepper ripening and processing of paprika. Phytochemistry 32:1103–1108

    Article  CAS  Google Scholar 

  • Mittova V, Tal M, Volokita M, Guy M (2002) Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species. Physiol Plant 115:393–400

    Article  PubMed  CAS  Google Scholar 

  • Moons A, Bauw G, Prinsen E, Van Montagu M, Van der Straeten D (1995) Molecular and physiological responses to abscisic acid and salts in roots of salt-sensitive and salt-tolerant indica rice varieties. Plant Physiol 107:177–186

    Article  PubMed  CAS  Google Scholar 

  • Moore S (1968) Amino acid analysis: aqueous dimethyl sulfoxide as solvent for the ninhydrin reaction. J Biol Chem 243:6281–6283

    PubMed  CAS  Google Scholar 

  • Mukherjee K, Roy Choudhury A, Gupta B, Gupta S, Sengupta DN (2006) An ABRE-binding factor, OSBZ8, is highly expressed in salt tolerant cultivars than in salt sensitive cultivars of indica rice. BMC Plant Biol 6:18

    Article  PubMed  CAS  Google Scholar 

  • Mundy J, Chua N-H (1988) Abscisic acid and water-stress induce the expression of a novel rice gene. EMBO J 7:2275–2287

    Google Scholar 

  • Mundy J, Yamaguchi-Shinozaki K, Chua NH (1990) Nuclear proteins bind conserved elements in the abscisic acid-responsive promoter of a rice rab gene. Proc Natl Acad Sci USA 87:1406–1410

    Article  PubMed  CAS  Google Scholar 

  • Munne Bosch S, Penuelas J, Asensio D, Llusia J (2004) Airborne ethylene may alter antioxidant protection and reduce tolerance of holm oak to heat and drought stress. Plant Physiol 136:2937–2947

    Article  PubMed  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular-weight plant DNA. Nucl Acids Res 8:4321–4325

    Article  PubMed  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Ann Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  Google Scholar 

  • Oberbacher MF, Vines HM (1963) Spectrophotometric assay of ascorbic acid oxidase. Nature 197:1203–1204

    Article  PubMed  CAS  Google Scholar 

  • Oeda K, Salinas J, Chua NH (1991) A tobacco bZIP transcription activator (TAF-1) binds to a G-box-like motif conserved in plant genes. EMBO J 10:1793–1802

    PubMed  CAS  Google Scholar 

  • Ono A, Izawa T, Chua NH, Shimamoto K (1996) The rab16B promoter of rice contains two distinct abscisic acid-responsive elements. Plant Physiol 112:483–491

    Article  PubMed  CAS  Google Scholar 

  • Parvanova D, Ivanov S, Konstantinova T, Karanov E, Atanassov A, Tsvetkov T, Alexieva V, Djilianov D (2004) Transgenic tobacco plants accumulating osmolytes show reduced oxidative damage under freezing stress. Plant Physiol Biochem 42:57–63

    Article  PubMed  CAS  Google Scholar 

  • Richard MC, Litvak S, Castroviejo M (1991) DNA polymerase ß from wheat embryos: a plant ð-like DNA polymerase. Arch Biochem Biophys 287:141–150

    Article  PubMed  CAS  Google Scholar 

  • Rorat T (2006) Plant dehydrins—tissue location, structure and function. Cell Mol Biol Lett 11:536–556

    Article  PubMed  CAS  Google Scholar 

  • Roy P, Niyogi K, Sengupta DN, Ghosh B (2005) Spermidine treatment to rice seedlings recovers salinity stress-induced damage of plasma membrane and PM-bound H+-ATPase in salt-tolerant and salt-sensitive rice cultivars. Plant Sci 168:583–591

    Article  CAS  Google Scholar 

  • Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–420

    CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn, vols. 1–3. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Shalata A, Neumann PM (2001) Exogenous ascorbic acid (Vitamin C) increases resistance to salt stress and reduces lipid peroxidation. J Exp Bot 52:2207–2211

    PubMed  CAS  Google Scholar 

  • Sifola MI, Postiglione L (2002) The effect of increasing NaCl in irrigation water on growth, gas exchange and yield of tobacco Burley type. Field Crops Res 74:81–91

    Article  Google Scholar 

  • Sivamani E, Bahieldin A, Wraith JM, Al-Niemi T, Dyer WE, Ho THD, Qu RD (2000) Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci 155:1–9

    Article  PubMed  CAS  Google Scholar 

  • Skriver K, Mundy J (1990) Gene expression in response to abscisic acid and osmotic stress. Plant Cell 2:503–512

    Article  PubMed  CAS  Google Scholar 

  • Srinivas ND, Rashmi KR, Raghavarao KSMS (1999) Extraction and purification of a plant peroxidase by aqueous two phase extraction coupled with gel filtration. Process Biochem 35:43–48

    Article  CAS  Google Scholar 

  • Sunkar R, Bartels D, Kirch HH (2003) Overexpression of a stress-inducible aldehyde dehydrogenase gene from Arabidopsis thaliana in transgenic plants improves stress tolerance. Plant J 35:452–464

    Article  PubMed  CAS  Google Scholar 

  • Tsuda T, Shiga K, Ohshima K, Kawakishi S, Osawa T (1996) Inhibition of lipid peroxidation and the active oxygen radical scavenging effect of anthocyanin pigments isolated from Phaseolus vulgaris L. Biochem Pharmacol 52:1033–1039

    Article  PubMed  CAS  Google Scholar 

  • Turner NC (1981) Techniques and experimental approaches for the measurement of plant water status. Plant Soil 58:339–366

    Article  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain treated bean plants. Protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  PubMed  CAS  Google Scholar 

  • Xu D, Duan X, Wang B, Hong B, Ho THD, Ray W (1996) Expression of a late embryogenesis abundant protein gene, HVA1 from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249–257

    PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Mundy J, Chua NH (1989) Four tightly linked rab genes are differentially expressed in rice. Plant Mol Biol 14:29–39

    Article  Google Scholar 

  • Yamamoto A, Bhuiyan MN, Waditee R, Tanaka Y, Esaka M, Oba K, Jagendorf AT, Takabe T (2005) Suppressed expression of the apoplastic ascorbate oxidase gene increases salt tolerance in tobacco and Arabidopsis plants. J Exp Bot 56:1785–1796

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki H, Sakihama Y, Ikehara N (1997) Flavonoid-Peroxidase reaction as a detoxification mechanism of plant cells against H2O2. Plant Physiol 115:1405–1412

    PubMed  CAS  Google Scholar 

  • Yoshimura K, Miyao K, Gaber A, Takeda T, Kanaboshi H, Miyasaka H, Shigeoka S (2004) Enhancement of stress tolerance in transgenic tobacco plants overexpressing Chlamydomonas glutathione peroxidase in chloroplasts or cytosol. Plant J 37:21–33

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Department of Biotechnology (DBT), Government of India, New Delhi (Grant No.BT/PR2965/AGR/02/155/04/2002). ARC acknowledges DBT for providing the award of Senior Research Fellowship upto March, 2006. ARC is also very much thankful to Prof. Timothy J. Close, Department of Botany and Plant Sciences, University of California, Riverside, for providing the anti-dehydrin antiserum as a kind gift. The authors thank Ms. Chaitali Roy for helping with the Agrobacterium-mediated transformation. The authors also gratefully acknowledge the excellent technical assistance of Mr. Jadab Ghosh, who has meticulously designed all the figures and photographs included in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dibyendu N. Sengupta.

Additional information

Communicated by W.T. Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

RoyChoudhury, A., Roy, C. & Sengupta, D.N. Transgenic tobacco plants overexpressing the heterologous lea gene Rab16A from rice during high salt and water deficit display enhanced tolerance to salinity stress. Plant Cell Rep 26, 1839–1859 (2007). https://doi.org/10.1007/s00299-007-0371-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-007-0371-2

Keywords

Navigation