Skip to main content
Log in

Proteomic analysis of somatic embryogenesis in Vitis vinifera

  • Physiology and Biochemistry
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Two dimensional gel electrophoresis coupled to mass spectrometry has been used to study the somatic embryogenesis in Vitis vinifera, by comparing embryogenic and non embryogenic calluses of the Thompson seedless cv. More than 1,000 spots were reproducibly resolved in colloidal Coomassie brilliant blue stained gels over a pI nonlinear range of 3–10 in the first dimension and using homogeneous 12.5% polyacrylamide gels in the second dimension. The expression pattern of 35 spots differed significantly between the two samples. These spots were processed by mass spectrometry analysis and the protein identity was assigned by using both the non-redundant protein and EST databases. Several responsive proteins, some already known to be involved in the somatic embryogenesis process while others, for the first time put into relation with this process, have been described. Moreover, they have been subdivided in functional categories, and their putative role is discussed in terms of their relevance in the somatic embryogenesis process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

2-DE:

Two-dimensional gel electrophoresis

EST:

Expressed sequence tag

MS:

Mass spectrometry

LC-ESI-MS/MS:

Liquid chromatography electrospray ionisation tandem mass spectrometry

SE:

Somatic embryogenesis

EC:

Embryogenic callus

NEC:

Non-embryogenic callus

ACN:

Acetonitril

BAP:

Benzylamino purine

2,4-D:

2,4-Dichlorophenoxyacetic acid

ROS:

Radical oxygen species

GST:

Glutathione-S-transferase

PR:

Pathogenesis-related

PP2A:

Protein phosphatase 2A

HSP:

Heat shock protein

References

  • Aleith F, Richter G (1990) Gene expression during induction of somatic embryogenesis in carrot cell suspensions. Planta 183:17–24

    Google Scholar 

  • Binns AN, Chen RH, Wood HN, Lynn DG (1987) Cell division promoting activity of naturally occurring dehydrodiconiferyl glucosides: do not wall components control cell division? Proc Natl Acad Sci USA 84:980–984

    Article  PubMed  CAS  Google Scholar 

  • Bögre L, Stefanov I, Àbrahám M, Somogyi I, Dudits D (1990) Differences in responses to 2,4-D-dichlorophenoxy acetic acid (2,4-D) treatment between embryogenic and non-embryogenic lines of alfalfa. In: Nijkamp HJJ, Van der Plas LHV, Van Aartrijk J (eds) Progress in plant cellular and molecular biology. Kluwer, Dordrecht, pp 427–436

    Google Scholar 

  • Cabiscol E, Piulats E, Echave P, Herrero E, Ros J (2000) Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae. J Biol Chem 275:27393–27398

    PubMed  CAS  Google Scholar 

  • Caliskan M, Turet M, Cuming AC (2004) Formation of wheat (Triticum aestivum L.) embryogenic callus involves peroxidegenerating germin-like oxalate oxidase. Planta 219:132–140

    Article  PubMed  CAS  Google Scholar 

  • Chugh A, Khurana P (2002) Gene expression during somatic embryogenesis––recent advances. Curr Sci 83:715–730

    CAS  Google Scholar 

  • Croce P, Vannini C, Bracale M (2005) An easy and convenient method for maintenance of embryogenic cultures of Vitis vinifera. Vitis 44:197–198

    CAS  Google Scholar 

  • Cui KR, Xing GS, Liu XM, Xing GM, Wang YF (1999) Effect of the hydrogen peroxide on somatic embryogenesis of Lycium barbatum L. Plant Sci 146:9–16

    Article  CAS  Google Scholar 

  • Deruére J, Jackson K, Garbers C, Soll D, DeLong A (1999) The RCN1-encoded A subunit of protein phosphatase 2A increases phosphatase activity in vivo. Plant J 20:389–399

    Article  PubMed  Google Scholar 

  • Dudits D, Bögre L, Györgyey J (1991) Molecular and cellular approaches to the analysis of plant embryo development from somatic cells in vitro. J Cell Sci 99:475–484

    Google Scholar 

  • Fehér A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Organ Cult 74:201–228

    Article  Google Scholar 

  • Fink AL (1999) Chaperone-mediated protein folding. Physiol Rev 79:425–449

    PubMed  CAS  Google Scholar 

  • Franks T, He DG, Thomas M (1998) Regeneration of transgenic Vitis vinifera L. Sultana plants: genotypic and phenotypic analysis. Mol Breed 4:321–333

    Article  CAS  Google Scholar 

  • Fujimura T, Komamine A, Matsumoto H (1980) Aspects of DNA, RNA and protein synthesis during somatic embryogenesis in carrot cell suspension culture. Physiol Plant 49:255–260

    Article  CAS  Google Scholar 

  • Galland R, Randoux B, Vasseur J , Hilbert JLA (2001) Glutathione S-transferase cDNA identified by mRNA differential display is upregulated during somatic embryogenesis in Cichorium. Biochim Biophys Acta 1522:212–216

    PubMed  CAS  Google Scholar 

  • Ganesan M, Jayabalan N (2004) Evaluation of haemoglobin (erythrogen): for improved somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L. cv. SVPR 2). Plant Cell Rep 23:181–187

    Article  PubMed  CAS  Google Scholar 

  • Garbers C, DeLong A, Deruére J, Bernasconi P, Söll D (1996) A mutation in protein phosphatase 2A regulatory subunit A affects auxin transport in Arabidopsis. EMBO J 15:2115–2124

    PubMed  CAS  Google Scholar 

  • Gianazza E, De Ponti P, Scienza A, Villa P, Martinelli L (1992) Monitoring by two-dimensional electrophoresis somatic embryogenesis in leaf and petiole explants from Vitis. Electrophoresis 13:203–209

    Article  PubMed  CAS  Google Scholar 

  • Giroux RW, Pauls KP (1997) Characterization of somatic embryogenesis-related cDNAs from alfalfa (Medicago sativa L.). Plant Mol Biol 33:393–404

    Article  PubMed  CAS  Google Scholar 

  • Györgyey J, Gartner A, Németh K, Magyar Z, Hirt H, Heberle-Bors E, Dudits D (1991) Alfalfa heat shock genes are differentially expressed during somatic embryogenesis. Plant Mol Biol 16:999–1007

    Article  PubMed  Google Scholar 

  • Goldberg RB, de Paiva G, Yadegari R (1994) Plant embryogenesis: zygote to seed. Science 266:605–614

    Article  PubMed  CAS  Google Scholar 

  • Gray DJ (1995) Somatic embryogenesis in grape. In: Gupta PK, Jain SM, Newton RJ (Eds) Somatic embryogenesis in woody perennials. Kluwer, Dordrecht, pp 191–217

    Google Scholar 

  • Herrera I, de la Paz Sánchez M, Molina J, Plasencia J, Vázquez-Ramos JM (2000) Proliferating cell nuclear antigen expression in maize seed development and germination: regulation by phytohormones and its association with putative cell cycle proteins. Physiol Plant 110:127–134

    Article  CAS  Google Scholar 

  • Imin N, De Jong F, Mathesius U, van Noorden G, Saeed NA, Wang X, Rose RJ, Rolfe BG (2004) Proteome reference maps of Medicago truncatula embryogenic cell cultures generated from single protoplasts. Proteomics 4:1883–1896

    Article  PubMed  CAS  Google Scholar 

  • Imin N, Nizamidin M, Daniher D, Nolan KE, Rose RJ, Rolfe BG (2005) Proteomic analysis of somatic embryogenesis in Medicago truncatula. Explant cultures grown under 6-benzylaminopurine and 1-naphthaleneacetic acid treatments. Plant Physiol 137:1250–1260

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Iwabuchi M, Ogawa K. (2003) The sugar-metabolic enzymes aldolase and triose-phosphate isomerase are targets of glutathionylation in Arabidopsis thaliana: detection using biotinylated glutathione. Plant Cell Physiol 44:655–660

    Article  PubMed  CAS  Google Scholar 

  • Ikeda-Iwai M, Umehara M, Satoh S, Kamada H (2003) Stress-induced somatic embryogenesis in vegetative tissues of Arabidopsis thaliana. Plant J 34:107–114

    Article  PubMed  CAS  Google Scholar 

  • Janssens V, Goris J (2001) Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J 353:417–439

    Article  PubMed  CAS  Google Scholar 

  • Kamada H, Kobayashi T, Kiyosue T, Harada H (1989) Stress-induced somatic embryogenesis in carrot and its application to synthetic seed production. In Vitro Cell Dev Biol 25:1163–1166

    Article  Google Scholar 

  • Kitamya E, Suzuki S, Sano T, Nagata N (2000) Isolation of two genes that were induced upon the initiation of somatic embryogenesis on carrot hypocotyls by high concentration of 2,4-D. Plant Cell Rep 19:551–557

    Article  Google Scholar 

  • Li Z, Jayasankar S, Gray DJ (2001) Expression of a bifunctional green fluorescent protein (GFP) fusion marker under the control of three constitutive promoters and enhanced derivatives in transgenic grape (Vitis vinifera). Plant Sci 160:877–887

    Article  PubMed  CAS  Google Scholar 

  • Lippert D, Zhuang J, Ralph S, Ellis DE, Gilbert M, Olafson R, Ritland K, Ellis B, Douglas CJ, Bohlmann J (2005) Proteome analysis of early somatic embryogenesis in Picea glauca. Proteomics 5:461–473

    Article  PubMed  CAS  Google Scholar 

  • Luo JP, Jiang ST, Pan LJ (2001) Enhanced somatic embryogenesis by salicylic acid of Astralagus adsurgens Pall.: relationship with H2O2 production and H2O2-metabolizing enzyme activities. Plant Sci 161:125–132

    Article  CAS  Google Scholar 

  • Maga G, Hübscher U (2003) Proliferating cell nuclear antigen (PCNA): a dancer with many partners. J Cell Sci 116:3051–3060

    Article  PubMed  CAS  Google Scholar 

  • Maraschin SF, de Priester W, Spaink HP, Wang M (2005) Androgenic switch: an example of plant embryogenesis from the male gametophyte perspective. J Exp Bot 56:1711–1726

    Article  PubMed  CAS  Google Scholar 

  • Marrs KA (1996) The function and regulation of glutathione S-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol 47:127–158

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Mur LA, Sturgess FJ, Farrell GG, Draper J (2004) The AoPR10 promoter and certain endogenous PR10 genes respond to oxidative signals in Arabidopsis. Mol Plant Pathol 5:435–451

    Article  CAS  Google Scholar 

  • Nagata T, Ishida S, Hasezawa S, Takahashi Y (1994) Genes involved in the dedifferentiation of plant cells. Int J Dev Biol 38:321–327

    PubMed  CAS  Google Scholar 

  • Neuhoff V, Stamm R, Eibl H (1985) Clear background and highly sensitive protein staining with Coomassie blue dyes in polyacrylamide gels: a systematic analysis. Electrophoresis 6:427–448

    Article  CAS  Google Scholar 

  • Pasternak T, Prinsen E, Ayaydin F, Miskolczi P, Potters G, Asard H, van Onckelen H, Dudits D, Fehér A (2002) The role of auxin, pH and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa (Medicago sativa L.). Plant Physiol 129:1807–1819

    Article  PubMed  CAS  Google Scholar 

  • Pradet A, Raymond P (1983) Adenine nucleotide ratios and adenylate energy charge in energy metabolism. Annu Rev Plant Physiol Plant Mol Biol 34:199–224

    CAS  Google Scholar 

  • Rani AR, Reddy VD, Prakash Babu P, Padmaja G (2005) Changes in protein profiles associated with somatic embryogenesis in peanut. Biol Plant 49:347–354

    Article  CAS  Google Scholar 

  • Sallandrouze A, Faurobert M, El Maataoui M, Espagnac H (1999) Two-dimensional electrophoretic analysis of proteins associated with somatic embryogenesis development in Cupressus sempervirens L. Electrophoresis 20:1109–1119

    Article  PubMed  CAS  Google Scholar 

  • Stasolla C, Bozhkov PV, Chu TM, van Zyl L, Egertsdotter U, Suarez MF, Craig D, Wolfinger RD, von Arnold S, Sederoff RR (2004) Variation in transcript abundance during somatic embryogenesis in gymnosperms. Tree Physiol 24:1073–1085

    PubMed  CAS  Google Scholar 

  • Takeda H, Kotake T, Nakagawa N, Sakurai N, Nevins DJ (2003) Expression and function of cell wall-bound cationic peroxidase in asparagus somatic embryogenesis. Plant Physiol 131:1765–1774

    Article  PubMed  CAS  Google Scholar 

  • Teutonico RA, Dudley MW, Orr JD, Lynn DG, Binns AN (1991) Activity and accumulation of cell division-promoting phenolics in tobacco tissue cultures. Plant Physiol 97:288–297

    Article  PubMed  CAS  Google Scholar 

  • Thibaud-Nissen F, Shealy RT, Khanna A, Vodkin LO (2003) Clustering of Microarray data reveals transcript patterns associated with somatic embryogenesis in soybean Plant Physiol 132:118–136

    Article  PubMed  CAS  Google Scholar 

  • Varren G, Fowler MW (1978) Cell number and cell doubling times during the development of carrot embryoids in suspension culture. Experientia 34:356–357

    Article  Google Scholar 

  • Winkelmann T, Heintz D, Dorsselaer AV, Serek M, Braun HP (2006) Proteomic analyses of somatic and zygotic embryos of Cyclamen persicum Mill. reveal new insights into seed and germination physiology. Planta 224:508–519

    Article  PubMed  CAS  Google Scholar 

  • Zarsky V, Garrido D, Eller N, Tupy J, Vicente O, Schöffl F, Heberle-Bors E (1995) The expression of a small heat shock gene is activated during induction of tabacco pollen embryogenesis by starvation. Plant Cell Environ 18:139–147

    Article  CAS  Google Scholar 

  • Zhou HW, Nussbaumer C, Chao Y, DeLong A (2004) Disparate roles for the regulatory A subunit isoforms in Arabidopsis protein phosphatase 2A. Plant Cell 16:709–722

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman JL (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5:1411–1423

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milena Marsoni.

Additional information

Communicated by P. Lakshmanan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marsoni, M., Bracale, M., Espen, L. et al. Proteomic analysis of somatic embryogenesis in Vitis vinifera . Plant Cell Rep 27, 347–356 (2008). https://doi.org/10.1007/s00299-007-0438-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-007-0438-0

Keywords

Navigation