Skip to main content

Advertisement

Log in

Characterization of VvSERK1, VvSERK2, VvSERK3 and VvL1L genes and their expression during somatic embryogenesis of grapevine (Vitis vinifera L.)

  • Cell Biology and Morphogenesis
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Little is known about the genes expressed during grapevine somatic embryogenesis. Both groups of Somatic Embryogenesis Receptor Kinase (SERK) and Leafy Cotyledon (LEC and L1L) genes seem to play key roles during somatic embryogenesis in various plant species. Therefore, we identified and analysed the sequences of VvSERK and VvL1L (Leafy cotyledon1-Like) genes. The deduced amino acid sequences of VvSERK1, VvSERK2 and VvSERK3 are very similar to that of registered SERK proteins, with highest homologies for the kinase domain in the C-terminal region. The amino acid sequence of VvL1L presents all the domains that are characteristic for LEC1 and L1L proteins, particularly, the 16 amino acid residues that serve as signature of the B-domain. Phylogenetic analysis distinguishes members of subclass LEC1 and subclass L1L, and VvL1L is closely related to L1L proteins. Using semi-quantitative RT-PCR, we studied gene expression of VvSERK1, VvSERK2, VvSERK3 and VvL1L in calli and somatic embryos obtained from anther culture of Vitis vinifera L. cv Chardonnay. Expression of VvSERK2 is relatively stable during in vitro culture. In contrast, VvSERK1, VvSERK3 and VvL1L are expressed more 4 to 6 weeks after transfer of the calli onto embryo induction medium, before the visible appearance of embryos on the calli as seen by environmental scanning electron microscopy. Later on (8 weeks after transfer) VvSERK1 expression is maintained in the embryogenic calli and VvSERK3 in the embryos, whereas VvL1L expression is very low. All together, these data suggest the involvement of VvSERK and VvL1L genes in grapevine somatic embryogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

2, 4-D:

2, 4-Dichlorophenoxyacetic acid

BAP:

6-Benzylaminopurine

FAA:

Formaldehyde-acetic acid-alcohol

LEC:

Leafy cotyledon

L1L:

Leafy cotyledon1-like

MS:

Murashige and Skoog (1962) medium

NAA:

1-naphthaleneacetic acid

NOA:

naphtoacetic acid

PVP:

Polyvinylpyrrolidone

RT-PCR:

Reverse Transcriptase PCR

SERK:

Somatic embryogenesis receptor kinase

STKs:

Serine-threonine kinases

References

  • Alemanno L, Devic M, Niemenak N, Sanier C, Guilleminot J, Rio M, Verdeil JL, Montoro P (2008) Characterization of leafy cotyledon1-like during embryogenesis in Theobroma cacao L. Planta 227:853–866

    Article  PubMed  CAS  Google Scholar 

  • Baudino S, Hansen S, Brettschneider R, Hecht VFG, Dresselhaus T, Lorz H, Dumas C, Rogowsky PM (2001) Molecular characterization of novel maize LRR receptor-like kinases, which belong to the SERK family. Planta 213:1–10

    Article  PubMed  CAS  Google Scholar 

  • Croce P, Vannini C, Bracale M (2005) An easy and convenient method for maintenance of embryogenic cultures of Vitis vinifera. Vitis 44:97–198

    Google Scholar 

  • Das D, Reddy M, Upadhyaya S, Sopory S (2002) An efficient leaf disc culture method for the regeneration via somatic embryogenesis and transformation of grape (Vitis vinifera L.). Plant Cell Rep 20:999–1005

    Article  CAS  Google Scholar 

  • Desperrier JM, Berger JL, Bessis R, Fournioux JC, Labroche C (2003) Création clonale dirigée par embryogenèse somatique. Bull OIV 76:871–872

    Google Scholar 

  • Di Gaspero G, Cipriano G (2003) Nucleotide binding site/leucine-rich repeats, Pto-like and receptor-like kinases related to disease resistance in grapevine. Mol Genet Genomics 269:612–623

    Article  PubMed  CAS  Google Scholar 

  • Dudits D, Bogre L, Gyorgyey J (1991) Molecular and cellular approaches to the analysis of plant embryo development from somatic cells in vitro. J Cell Sci 99:475–484

    Google Scholar 

  • Fambrini M, Durante C, Cionini G, Geri C, Gioregtti L, Michelotti V, Salvini M, Pugliesi C (2006) Characterization of LEAFY COTYLEDON1-LIKE gene in Helianthus annuus and its relationship with zygotic and somatic embryogenesis. Dev Genes Evol 216:253–264

    Article  PubMed  CAS  Google Scholar 

  • Fehér A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to embryogenic state. Plant Cell Tiss Organ Cult 74:201–228

    Article  Google Scholar 

  • French-Italian Public Consortium for Grapevine Genome Characterization (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  CAS  Google Scholar 

  • Gaj MD, Zhang S, Harada JJ, Leamux PG (2005) Leafy cotyledon genes are essential for induction of somatic embryogenesis of Arabidopsis. Planta 222:977–988

    Article  PubMed  CAS  Google Scholar 

  • Gazzarrini S, Tsuchiya Y, Lumba S, Okamoto M, McCourt P (2004) The transcription factor FUSCA3 controls developmental timing in Arabidopsis through the hormones gibberellin and abscisic acid. Dev Cell 7:373–385

    Article  PubMed  CAS  Google Scholar 

  • Guzzo F, Baldan B, Levi M, Sparvoli E, Loschiavo E, Terzi M, Mariani P (1995) Early cellular events during induction of carrot explants with 2, 4-D. Protoplasma 185:28–36

    Article  CAS  Google Scholar 

  • Harada JJ (2001) Role of Arabidopsis LEAFY COTYLEDON genes in seed development. J Plant Physiol 158:405–409

    Article  CAS  Google Scholar 

  • Hecht V, Vielle-Calzada JP, Hartog MV, Schmidt EDL, Boutilier K, Grossniklaus U, De Vries SC (2001) The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol 127:803–816

    Article  PubMed  CAS  Google Scholar 

  • Heese A, Hann DR, Gimenez-Ibanez S, Jones AME, He K, Li J, Schroeder JI, Peck SC, Rathjen JP (2007) The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc Natl Acad Sci USA 104:12217–12222

    Article  PubMed  CAS  Google Scholar 

  • Hu H, Xiong L, Yang Y (2005) Rice SERK1 gene positively regulates somatic embryogenesis of cultured cell and host defense response against fungal infection. Planta 222:107–117

    Article  PubMed  CAS  Google Scholar 

  • Ito Y, Takaya K, Kurata N (2005) Expression of SERK family receptor-like protein kinase genes in rice. Biochim Biophys Acta 1730:253–258

    PubMed  CAS  Google Scholar 

  • Karlova R, Boeren S, Russinova E, Acker J, Vervoorts J, De Vries SC (2006) The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 protein complex includes BRASSINOSTEROID-INSENSITIVE 1. Plant Cell 18:626–638

    Article  PubMed  CAS  Google Scholar 

  • Kitamiya E, Suzuki S, Sano T, Nagata T (2000) Isolation of two genes that were induced upon the initiation of somatic embryogenesis on carrot hypocotyls by high concentrations of 2, 4-D. Plant Cell Rep 19:551–557

    Article  CAS  Google Scholar 

  • Kwaaitaal MACJ, De Vries SC (2007) The SERK1 gene is expressed in procambium and immature vascular cells. J Exp Bot 58:2887–2896

    Article  PubMed  CAS  Google Scholar 

  • Kwong RM, Bui AQ, Lee H, Kwong LW, Fischer RL, Goldberg RB, Harada JJ (2003) LEAFY COTYLEDON1-LIKE defines a class of regulators essential for embryo development. Plant Cell 15:5–18

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Fischer RL, Goldberg RB, Harada JJ (2003) Arabidopsis LEAFY COTYLEDON1 represents a functionally specialized subunit of the CCAAT binding transcription factor. Proc Natl Acad Sci USA 100:2152–2156

    Article  PubMed  CAS  Google Scholar 

  • Li J, Wen J, Lease KA, Doke JT, Tax FE, Walker JC (2002) BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110:213–222

    Article  PubMed  CAS  Google Scholar 

  • Lotan T, Ohto M, Yee KM, West MA, Lo R, Kwong RW, Yamagishi K, Fischer RL, Goldberg RB, Harada JJ (1998) Arabidopsis LEAFY COTYLEDON 1 is sufficient to induce embryo development in vegetative cells. Cell 93:1195–1205

    Article  PubMed  CAS  Google Scholar 

  • Mahalakshmi A, Khurana JP, Khurana P (2003) Rapid induction of somatic embryogenesis by 2, 4-D in leaf base cultures of wheat (Triticum aestivum L). Plant Biotech 20:267–273

    CAS  Google Scholar 

  • Mahalakshmi A, Singla B, Khurana JP, Khurana P (2007) Role of calcium-calmodulin in auxin-induced somatic embryogenesis in leaf base cultures of wheat (Triticum aestivum var. HD 2329). Plant Cell Tissue Organ Cult 88:167–174

    Article  CAS  Google Scholar 

  • Mahonen AP, Bishopp A, Higuchi M, Nieminen KM, Kinoshita K, Tormakangas K, Ikeda Y, Oka A, Kakimoto T, Helariutta Y (2006) Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development. Science 311:94–98

    Article  PubMed  CAS  Google Scholar 

  • Maillot P, Kieffer F, Walter B (2006) Somatic embryogenesis from stem nodal sections of grapevine. Vitis 45:185–189

    Google Scholar 

  • Martinelli L, Bragagna P, Poletti V, Scienza A (1993) Somatic embryogenesis from leaf and petiole derived callus of Vitis rupestris. Plant Cell Rep 12:207–210

    Article  Google Scholar 

  • Mauro CI, Nef C, Fallot J (1986) Stimulation of somatic embryogenesis and plant regeneration from anther culture of Vitis vinifera cv. Cabernet-Sauvignon. Plant Cell Rep 5:377–380

    Article  Google Scholar 

  • Mordhorst AP, Voerman KJ, Hartog MV, Meijer EA, van Went J, Koornneef M, de Vries SC (1998) Somatic embryogenesis in Arabidopsis thaliana is facilitated by mutations in genes repressing meristematic cell divisions. Genetics 149:549–563

    PubMed  CAS  Google Scholar 

  • Morgana C, Di Lorenzo R, Carimi F (2004) Somatic embryogenesis of Vitis vinifera L. (cv. Sugraone) from stigma and style culture. Vitis 43:169–173

    CAS  Google Scholar 

  • Mullins MG (1985) Amplification of clonal variation in the grapevine: progress and prospects. In: Colloque amélioration de la vigne et culture in vitro, Paris, pp 63–73

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nam KH, Li J (2002) BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell 110:203–212

    Article  PubMed  CAS  Google Scholar 

  • Nolan KE, Irwanto RR, Rose RJ (2003) Auxin up-regulated MtSERK1 expression in both Medicago truncatula root-forming and embryogenic cultures. Plant Physiol 133:218–230

    Article  PubMed  CAS  Google Scholar 

  • Perrin M, Martin D, Joly D, Demangeat G, This P, Masson JE (2001) Medium-dependent response of grapevine somatic embryogenic cells. Plant Sci 161:107–116

    Article  CAS  Google Scholar 

  • Perrin M, Gertz C, Masson JE (2004) High efficiency initiation of regenerable embryonic callus from anther filaments of 19 grapevine genotypes grown worldwide. Plant Sci 167:1343–1349

    Article  CAS  Google Scholar 

  • Raghavan V (2004) Role of 2, 4-dichlorophenoxyacetic acid (2, 4-D) in somatic embryogenesis on cultured zygotic embryos of Arabidopsis: cell expansion, cell cycling, and morphogenesis during continuous exposure of embryos to 2, 4-D. Am J Bot 91:1743–1756

    Article  CAS  Google Scholar 

  • Salunkhe CK, Rao PS, Mhatre M (1997) Induction of somatic embryogenesis and plantlets in tendrils of Vitis vinfera L. Plant Cell Rep 17:65–67

    Article  CAS  Google Scholar 

  • Santos MO, Romano E, Yotoko KSC, Tinoco MLP, Dias BBA, Aragao FJL (2005) Characterisation of the cacao somatic embryogenesis receptor-like kinase (SERK) gene expressed during somatic embryogenesis. Plant Sci 168:723–729

    Article  CAS  Google Scholar 

  • Sasaki G, Katoh K, Hirose N, Suga H, Kuma K, Miyata T, Su Z (2007) Multiple receptor-like kinase cDNAs from liverwort Marchantia polymorpha and two charophycean green algae, Closterium ehrenbergii and Nitella axillaris: extensive gene duplications and gene shufflings in the early evolution of streptophytes. Gene 401:135–144

    Article  PubMed  CAS  Google Scholar 

  • Schmidt ED, Guzzo F, Toonen MA, De Vries SC (1997) A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124:2049–2062

    PubMed  CAS  Google Scholar 

  • Shiu SH, Bleecker AB (2001) Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci USA 98:10763–10768

    Article  PubMed  CAS  Google Scholar 

  • Shiu SH, Karlowski WM, Pan R, Tzeng YH, Mayer KFX, Li WH (2004) Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16:1220–1234

    Article  PubMed  CAS  Google Scholar 

  • Singh MB, Bhalla PL (2006) Plant stem cells carve their own niche. Trends Plant Sci 11:241–246

    Article  PubMed  CAS  Google Scholar 

  • Singla B, Khurana JP, Khurana P (2008) Characterization of three somatic embryogenesis receptor kinase genes from wheat, Triticum aestivum. Plant Cell Rep 27:833–843

    Article  PubMed  CAS  Google Scholar 

  • Somleva MN, Schmidt ED, De Vries SC (2000) Embryogenic cells in Dactylis glomerata L. (Poaceae) explants identified by cell tracking and by SERK expression. Plant Cell Rep 19:718–726

    Article  CAS  Google Scholar 

  • Song D, Li G, Song F, Zheng Z (2007) Molecular characterization and expressiona analysis of OsBISERK1, a gene encoding a leucine-rich repeat receptor-like kinase, during disease resistance responses in rice. Mol Biol Rep 35(2):275–283. doi:10.1007/s11033-007-9080-8

    Article  PubMed  CAS  Google Scholar 

  • Stone SL, Kwong LW, Yee KM, Pelletier J, Lepiniec L, Fischer RL, Goldberg RB, Haradda JJ (2001) LEAFY COTYLEDON 2 encodes a B3 domain transcription factor that enduces embryo development. Proc Natl Acad Sci USA 98:11806–11811

    Article  PubMed  CAS  Google Scholar 

  • Thibaud-Nissen F, Shealy RT, Khanna A, Vodkin LO (2003) Clustering of microarray data reveals transcript patterns associated with somatic embryogenesis in soybean. Plant Physiol 132:118–136

    Article  PubMed  CAS  Google Scholar 

  • Thomas C, Meyer D, Himber C, Steinmetz A (2004) Spatial expression of a sunflower SERK gene during induction of somatic embryogenesis and shoot organogenesis. Plant Physiol Biochem 42:35–42

    Article  PubMed  CAS  Google Scholar 

  • Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A et al (2007) A High Quality Draft Consensus Sequence of the Genome of a Heterozygous Grapevine Variety. PLoS ONE 2(12):e1326. doi:10.1371/journal.pone.0001326

    Article  PubMed  CAS  Google Scholar 

  • Walker JC (1994) Structure and function of the receptor-like protein kinases of higher plants. Plant Mol Biol 26:1599–1609

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Caruso LV, Downie AB, Perry SE (2004) The embryo MADS domain protein AGAMOUS-Like 15 directly regulates expression of a gene encoding an enzyme involved in gibberellin metabolism. Plant Cell 16:1206–1219

    Article  PubMed  CAS  Google Scholar 

  • Yazawa K, Takahata K, Kamada H (2004) Isolation of the gene encoding Carrot leafy cotyledon 1 and expression analysis during somatic and zygotic embryogenesis. Plant Physiol Biochem 42:215–223

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Wong L, Meng L, Lemaux PG (2002) Similarity of expression patterns of knotted1 and ZmLEC1 during somatic and zygotic embryogenesis in maize (Zea mays L.). Planta 215:191–194

    Article  PubMed  CAS  Google Scholar 

  • Zhu C, Perry SE (2005) Control of expression and autoregulation of AGL15, a member of the MADS-box family. Plant J 41:583–594

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the “French-Italian Public Consortium for Grapevine Genome Characterization” to have made available the data of the Genoscope. We acknowledge Loïc Vidal (ICSI, UHA, Mulhouse, France) for the realization of environmental scanning electron micrographs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Schellenbaum.

Additional information

Communicated by A. Feher.

Paul Schellenbaum and Alban Jacques contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary data (TIFF 401 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schellenbaum, P., Jacques, A., Maillot, P. et al. Characterization of VvSERK1, VvSERK2, VvSERK3 and VvL1L genes and their expression during somatic embryogenesis of grapevine (Vitis vinifera L.). Plant Cell Rep 27, 1799–1809 (2008). https://doi.org/10.1007/s00299-008-0588-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-008-0588-8

Keywords

Navigation