Skip to main content
Log in

Histological and molecular analysis of pollen–pistil interaction in clementine

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

In contrast to model species, the self-incompatibility reaction in citrus has been poorly studied. It is assumed to be gametophytically determined and genetically controlled by the S-locus, which in other species encodes for glycoproteins (S-RNases) showing ribonuclease activity. To investigate pollen–pistil interaction, the pollen tube growth of two clementine varieties, ‘Comune’ (self-incompatible) and ‘Monreal’ (a ‘Comune’ self-compatible mutation) was analysed by histological assays in self- and cross-pollination conditions. Cross-pollination assays demonstrated that the mutation leading to self-compatibility in ‘Monreal’ occurred in the stylar tissues. Similar rates of pollen germination were observed in both genotypes. However, ‘Comune’ pollen tubes showed altered morphology and arrested growth in the upper style while in ‘Monreal’ they grew straight toward the ovary. Moreover, to identify genes putatively involved in pollen–pistil interaction and self-incompatibility, research based on the complementary DNA-amplified fragment length polymorphism technique was carried out to compare the transcript profiles of unpollinated and self-pollinated styles and stigmas of the two cultivars. This analysis identified 96 unigenes such as receptor-like kinases, stress-induced genes, transcripts involved in the phenylpropanoid pathway, transcription factors and genes related to calcium and hormone signalling. Surprisingly, a high percentage of active long terminal repeat (LTR) and non-LTR retrotransposons were identified among the unigenes, indicating their activation in response to pollination and their possible role in the regulation of self-incompatibility genes. The quantitative reverse trascription-polymerase chain reaction analysis of selected gene tags showed transcriptional differences between the two genotypes during pollen germination and pollen tube elongation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

cDNA-AFLP:

Complementary DNA-amplified fragment length polymorphism

EST:

Expressed sequence tag

LTR:

Long terminal repeat

qRT-PCR:

Quantitative reverse trascription-polymerase chain reaction

SC:

Self-compatible

SI:

Self-incompatible

TDF:

Transcript derived fragment

References

  • Bachem CWB, van der Hoeven RS, de Bruijn SM, Vreugdenhil D, Zabeau M, Visser R (1996) Visualisation of differential gene expression using a novel method of RNA finger-printing based on AFLP: analysis of gene expression during potato tuber development. Plant J 9:745–753

    Article  PubMed  CAS  Google Scholar 

  • Bernet GP, Asins MJ (2003) Identification and genomic distribution of gypsy like retrotransposons in Citrus and Poncirus. Theor Appl Genet 108:121–130

    Article  PubMed  CAS  Google Scholar 

  • Breto MO, Ruiz C, Pina JA, Asins MJ (2001) The diversification of Citrus clementina Hort. Ex Tan., a vegetatively propagated crop species. Mol Phylogenet Evol 21:285–293

    Article  PubMed  CAS  Google Scholar 

  • Breyne P, Zabeau M (2001) Genome-wide expression analysis of plant cell cycle modulated genes. Curr Opin Plant Biol 4:136–142

    Article  PubMed  CAS  Google Scholar 

  • Cadle-Davidson MM, Owens CL (2008) Genomic amplification of the Gret1 retroelement in white-fruited accessions of wild Vitis and interspecific hybrids. Theor Appl Genet 8:1079–1094

    Article  Google Scholar 

  • Chen D, Zhao J (2008) Free IAA in stigmas and styles during pollen germination and pollen tube growth of Nicotiana tabacum. Physiol Plant 134:202–215

    Article  PubMed  CAS  Google Scholar 

  • Clarke SR, Staiger CJ, Gibbon BC, Franklin-Tong VE (1998) A potential signaling role for profilin in pollen of Papaver rhoeas. Plant Cell 10:967–979

    Article  PubMed  CAS  Google Scholar 

  • Crouzet J, Trombik T, Fraysse AS, Boutry M (2006) Organization and function of the plant pleiotropic drug resistance ABC transporter family. FEBS Lett 580:1123–1130

    Article  PubMed  CAS  Google Scholar 

  • de Diego JG, Rodriguez FD, Rodriguez Lorenzo JL, Grappin P, Cervantes E (2006) cDNA-AFLP analysis of seed germination in Arabidopsis thaliana identifies transposons and new genomic sequences. J Plant Physiol 163:452–462

    Article  PubMed  Google Scholar 

  • de Nettancourt D (1977) Incompatibility in angiosperms. Springer, New York

    Google Scholar 

  • de Nettancourt D (1997) Incompatibility in angiosperms. Sex Plant Reprod 10:185–199

    Article  Google Scholar 

  • Dumas C, Gaude T (2006) Fertilization in plants: is calcium a key player? Semin Cell Dev Biol 17:244–253

    Article  PubMed  CAS  Google Scholar 

  • Eti S, Stosser R (1992) Pollen tube growth and development of ovules in relation to fruit set in mandarins, cv. ‘Clementine’ (Citrus reticulata, Blanco). Acta Hortic 321:621–625

    Google Scholar 

  • Fang J, Song C, Zheng Y, Qiao Y, Zhang Z, Dong Q, Chao CT (2008) Variation in cytosine methylation in Clementine mandarin cultivars. J Hortic Sci Biotechnol 83:833–839

    CAS  Google Scholar 

  • Franklin-Tong VE, Ride JP, Read ND, Trewavas AJ, Franklin FCH (1993) The self-incompatibility response in Papaver rhoeas is mediated by cytosolic free calcium. Plant J 4:163–177

    Article  CAS  Google Scholar 

  • Franklin-Tong VE, Ride JP, Franklin FCH (1995) Recombinant stigmatic self-incompatibility (S-) protein elicits a Ca2+ transient in pollen of Papaver rhoeas. Plant J 8:299–307

    Article  CAS  Google Scholar 

  • Ge LL, Tian HQ, Russell SD (2007) Calcium function and distribution during fertilization in angiosperms. Am J Bot 94:1046–1060

    Article  CAS  Google Scholar 

  • Grandbastien MA (1998) Activation of plant retrotransposon under stress conditions. Trends Plant Sci 3:181–187

    Article  Google Scholar 

  • Guo QG, Ji K, Wu Q, Wu YK, He Q, Xiang SQ, Liang GL (2008) Distribution and influence of Ca2+ in pollen and pollen tube of Citrus sinensis Osbeck. In: Proceedings of the 11th international citrus congress. International Society of Citriculture, Wuhan China, p 150 (abstract)

  • Gutierrez L, Conejero G, Castelain M, Guenin S, Verdeil JL, Thomasset B, Van Wuytswinkel O (2006) Identification of new gene expression regulators specifically expressed during plant seed maturation. J Exp Bot 57:1919–1932

    Article  PubMed  CAS  Google Scholar 

  • Hasenstein KH, Zavada MS (2001) Auxin modification of the incompatibility response in Theobroma cacao. Physiol Plant 112:113–118

    Article  PubMed  CAS  Google Scholar 

  • Hiscock SJ, Allen AM (2008) Diverse cell signalling pathways regulate pollen–stigma interactions: the search for consensus. New Phytol 179:286–317

    Article  PubMed  CAS  Google Scholar 

  • Hodgson RW (1967) Horticultural varieties of citrus. In: Reuther W, Webber HJ, Batchelor LD (eds) Citrus industry, vol 1. University of California Press, Berkeley

    Google Scholar 

  • Holdaway-Clarke TL, Hepler PK (2003) Control of pollen tube growth: role of ion gradients and fluxes. New Phytol 159:539–563

    Article  CAS  Google Scholar 

  • Hong SB, Tucker ML (2000) Molecular characterization of a tomato polygalacturonase gene abundantly expressed in the upper third of pistils from opened and unopened flowers. Plant Cell Rep 19:680–683

    Article  CAS  Google Scholar 

  • Jain M, Nijhawan A, Tyagi AK, Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun 345:646–651

    Article  PubMed  CAS  Google Scholar 

  • Jefferies CJ (1975) Floral biology and fruit development in the European plum. Ph.D. thesis, Research Station of Long Ashton, University of Bristol

  • Jordan ND, Ride JP, Rudd JJ, Davies EM, Franklin-Tong VE, Franklin FCH (2000) Inhibition of self-incompatible pollen in Papaver rhoeas involves a complex series of cellular events. Ann Bot 85:197–202

    Article  CAS  Google Scholar 

  • Kashkush K, Feldman M, Levy AA (2003) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet 33:102–106

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi S, Goto-Yamamoto N, Hirochika H (2004) Retrotransposon-induced mutations in grape skin colour. Science 304:982

    Article  PubMed  Google Scholar 

  • Kohany O, Gentles AJ, Hankus L, Jurka J (2006) Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. BMC Bioinformatics 7:474

    Article  PubMed  Google Scholar 

  • Kovaleva L, Zakharova E (2003) Hormonal status of the pollen–pistil system at the progamic phase of fertilization after compatible and incompatible pollination in Petunia hybrida L. Sex Plant Reprod 16:191–196

    Article  CAS  Google Scholar 

  • Lan LF, Li MN, Lai Y, Xu WY, Kong ZS, Ying K, Han B, Xue YB (2005) Microarray analysis reveals similarities and variations in genetic programs controlling pollination/fertilization and stress responses in rice (Oryza sativa L.). Plant Mol Biol 59:151–164

    Article  PubMed  CAS  Google Scholar 

  • Li M, Xu W, Yang W, Kong Z, Xue Y (2007) Genome-wide gene expression profiling reveals conserved and novel molecular functions of the stigma in rice (Oryza sativa L.). Plant Physiol 144:1797–1812

    Article  PubMed  CAS  Google Scholar 

  • Linskens HF, Esser K (1957) Über eine spezifische Anfärbung der Pollenschläuche in Griffel und die Zahl der Kallossepfropten nach elbstung und Fremdung. Naturwissenschaften 44:16

    Article  Google Scholar 

  • Lord EM (2003) Adhesion and guidance in compatible pollination. J Exp Bot 54:47–54

    Article  PubMed  CAS  Google Scholar 

  • Malho R, Liu Q, Monteiro D, Rato C, Camacho L, Dinis A (2006) Signalling pathways in pollen germination and tube growth. Protoplasma 228:21–30

    Article  PubMed  CAS  Google Scholar 

  • McClure BA, Franklin-Tong V (2006) Gametophytic self-incompatibility: understanding the cellular mechanisms involved in “self” pollen tube inhibition. Planta 224:233–245

    Article  PubMed  CAS  Google Scholar 

  • Mesejo C, Martínez-Fuentes A, Reig C, Rivas F, Agustí M (2005) The inhibitory effect of CuSO4 on pollen germination and pollen tube growth and its application for the production of seedless fruit. Plant Sci 170:37–43

    Article  Google Scholar 

  • Mesejo C, Martínez-Fuentes A, Reig C, Agustí M (2008) Gibberellic acid impairs fertilization in Clementine mandarin under cross-pollination conditions. Plant Sci 175:267–271

    Article  CAS  Google Scholar 

  • Mo Y, Nagel C, Taylor LP (1992) Biochemical complementation of chalcone synthase mutants defines a role for flavonols in functional pollen. Proc Natl Acad Sci USA 89:7213–7217

    Article  PubMed  CAS  Google Scholar 

  • Moons A (2008) Transcriptional profiling of the PDR gene family in rice roots in response to plant growth regulators, redox perturbations and weak organic acid stresses. Planta 229:53–71

    Article  PubMed  CAS  Google Scholar 

  • Paponov IA, Teale WD, Trebar M, Blilou I, Palme K (2005) The PIN auxin efflux facilitators: evolutionary and functional perspectives. Trends Plant Sci 10:170–177

    Article  PubMed  CAS  Google Scholar 

  • Pons J, Pastor J, Polls M, Reverter AJ (1995a) Polinización cruzada en cítricos. I. Incidencia comercial. Lev Agrícola 332:201–207

    Google Scholar 

  • Pons J, Pastor J, Polls M, Reverter AJ (1995b) Polinización cruzada en cítricos. II. Efecto del viento. Lev Agrícola 333:326–329

    Google Scholar 

  • Pons J, Pastor J, Polls M, Reverter AJ (1996) Polinización cruzada en cítricos. III. Polinización entomófila. Efecto de repelentes. Lev Agrícola 337:291–295

    Google Scholar 

  • Quiapim AC, Brito MS, Bernardes LAS et al (2009) Analysis of the Nicotiana tabacum stigma/style transcriptome reveals gene expression differences between wet and dry stigma species. Plant Physiol 149:1211–1230

    Article  PubMed  CAS  Google Scholar 

  • Rico-Cabanas L, Martínez-Izquierdo JA (2007) CIRE1, a novel transcriptionally active Ty1-copia retrotransposon from Citrus sinensis. Mol Genet Genomics 277:365–377

    Article  PubMed  CAS  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Sanzol J (2009) Pistil-function breakdown in a new S-allele of European pear, S21, confers self-compatibility. Plant Cell Rep 28:457–467

    Article  PubMed  CAS  Google Scholar 

  • Sassa H, Nishio T, Kowyama Y, Hirano H, Koba T, Ikehashi H (1993) Self-incompatibility (S) alleles of the Rosaceae encode members of a distinct class of the T2/S ribonuclease superfamily. Mol Genet Genomics 250:547–557

    Google Scholar 

  • Schiott M, Romanowsky SM, Baekgaard L, Jakobsen MK, Palmgren MG, Harper JF (2004) A plant plasma membrane Ca2+ pump is required for normal pollen tube growth and fertilization. Proc Natl Acad Sci USA 101:9502–9507

    Article  PubMed  CAS  Google Scholar 

  • Sedgley M, Griffin AR (1989) Sexual reproduction of tree crops. Academic, London

    Google Scholar 

  • Silva NF, Goring DR (2001) Mechanisms of self-incompatibility in flowering plants. Cell Mol Life Sci 58:1988–2007

    Article  PubMed  CAS  Google Scholar 

  • Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8:272–285

    Article  PubMed  CAS  Google Scholar 

  • Solfanelli C, Bartolini S, Vitagliano C, Lorenzi R (2006) Immunolocalization and quantification of IAA after self- and free-pollination in Olea europaea L. Sci Hortic 110:345–351

    Article  CAS  Google Scholar 

  • Soost RK (1965) Incompatibility alleles in the genus Citrus. Proc Am Soc Hortic Sci 87:176–180

    Google Scholar 

  • Soost RK (1969) The incompatibility gene system in Citrus. In: Chapman HD (ed) Proceedings of the first international citrus symposium, vol 1. University of California, Riverside, pp 189–190

    Google Scholar 

  • Stahl RJ, Arnoldo MA, Glavin TL, Goring DR, Rothstein SJ (1998) The self-incompatibility phenotype in Brassica is altered by the transformation of a mutant S locus receptor kinase. Plant Cell 10:209–218

    Article  PubMed  CAS  Google Scholar 

  • Swanson WJ, Vacquier VD (2002) Rapid evolution of reproductive proteins. Nat Rev Genet 3:137–144

    Article  PubMed  CAS  Google Scholar 

  • Swanson R, Edlund AF, Preuss D (2004) Species specificity in pollen–pistil interactions. Annu Rev Genet 38:793–818

    Article  PubMed  CAS  Google Scholar 

  • Talon M, Gmitter FG Jr (2008) Citrus genomics. Int J Plant Genomics 528361. doi:10.1155/2008/528361

  • Tao R, Yamane H, Sassa H, Mori H, Gradziel TM, Dandekar AM et al (1997) Identification of stylar RNases associated with gametophytic self-incompatibility in almond (Prunus dulcis). Plant Cell Physiol 38:304–311

    PubMed  CAS  Google Scholar 

  • Tao NG, Xu J, Cheng YJ, Hong L, Guo WW, Yi HL, Deng XX (2005) Isolation and characterization of Copia-like retrotransposons from 12 sweet orange (Citrus sinensis Osbeck) cultivars. J Integr Plant Biol 47:1507–1515

    Article  CAS  Google Scholar 

  • Taylor LP, Grotewold E (2005) Flavonoids as developmental regulators. Curr Opin Plant Biol 8:317–323

    Article  PubMed  CAS  Google Scholar 

  • Terol J, Naranjo MA, Ollitrault P, Talon M (2008) Development of genomic resources for Citrus clementina: characterization of three deep-coverage BAC libraries and analysis of 46, 000 BAC end sequences. BMC Genomics 9:423

    Article  PubMed  Google Scholar 

  • Ton LD, Krezdorn AH (1966) Growth of pollen tubes in three incompatible varieties of Citrus. J Am Soc Hortic Sci 89:211–215

    Google Scholar 

  • Toriyama K, Stein JC, Nasrallah ME, Nasrallah JB (1991) Transformation of Brassica oleracea with an S-locus gene from B. campestris changes the self-incompatibility phenotype. Theor Appl Genet 81:769–776

    Article  CAS  Google Scholar 

  • Trabut L (1902) L’hybridation des Citrus: Una nouvelle tangerine “La Clementine”. Rev Hortic 74:232–234

    Google Scholar 

  • Trombik T, Jasinsky M, Crouzet J, Boutry M (2008) Identification of a cluster IV pleiotropic drug resistance transporter gene in the style of Nicotiana plumbaginifolia. Plant Mol Biol 66:165–175

    Article  PubMed  CAS  Google Scholar 

  • Tung CW, Dwyer KG, Nasrallah ME, Nasrallah JB (2005) Genome-wide identification of genes expressed in Arabidopsis pistils specifically along the path of pollen tube growth. Plant Physiol 138:977–989

    Article  PubMed  CAS  Google Scholar 

  • Vardi A, Levin I, Carmi N (2008) Induction of seedlessness in Citrus: from classical techniques to emerging biotechnological approaches. J Am Soc Hortic Sci 133:117–126

    Google Scholar 

  • Wakana A, Ngo BX, Fukudome I, Kajiwara K (2004) Estimation of the degree of self-incompatibility reaction during flower bud development and production of self-fertilized seeds by bud pollination in self-incompatible Citrus cultivars. J Fac Agric Kyushu Univ 49:307–320

    Google Scholar 

  • Weil C, Martienssen R (2008) Epigenetic interactions between transposons and genes: lessons from plants. Curr Opin Genet Dev 18:188–192

    Article  PubMed  CAS  Google Scholar 

  • Wheeler MJ, Franklin-Tong VE, Franklin FCH (2001) The molecular and genetic basis of pollen–pistil interactions. New Phytol 151:565–584

    Article  CAS  Google Scholar 

  • Xue Y, Carpenter R, Dickinson HG, Coen ES (1996) Origin of allelic diversity in Antirrhinum S locus RNases. Plant Cell 8:805–814

    Article  PubMed  CAS  Google Scholar 

  • Yamane H, Ikeda K, Hauck NR, Iezzoni AF, Tao R (2003) Selfincompatibility (S) locus region of the mutated S6-haplotypes of sour cherry (Prunus cerasus) contains a functional pollen S-allele and a non-functional pistil S-allele. J Exp Bot 54:2431–2434

    Article  PubMed  CAS  Google Scholar 

  • Yao JL, Dong YH, Morris B (2001) Parthenocarpic apple fruit production conferred by transposon insertion mutations in a MADS-box transcription factor. Proc Natl Acad Sci USA 98:1306–1311

    Article  PubMed  CAS  Google Scholar 

  • Ylstra B, Busscher J, Franken J, Hollman PCH, Mol JNM, van Tunen AJ (1994) Flavonols and fertilization in Petunia hybrida: localization and mode of action during pollen tube growth. Plant J 6:201–212

    Article  CAS  Google Scholar 

  • Yoshida KT, Endo M, Nakazono M, Fukuda H, Demura T, Tsuchiya T, Watanabe M (2005) cDNA microarray analysis of gene expression changes during pollination, pollen-tube elongation, fertilization, and early embryogenesis in rice pistils. Sex Plant Reprod 17:269–275

    Article  CAS  Google Scholar 

  • Zamboni A, Minoia L, Ferrarini A, Tornielli GB, Zago E, Delledonne M, Pezzotti M (2008) Molecular analysis of post-harvest withering in grape by AFLP transcriptional profiling. J Exp Bot 59:4145–4159

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funding was provided by the Italian Ministry of Agriculture and Forestry—Project RAVAGRU (Advanced research in citriculture), publication no. 27—and by Italian Ministry of University—Project PRIN “Il processo produttivo delle piante arboree da frutto: aspetti molecolari, fisiologici ed agronomici dell’incompatibilità fiorale e strategie di controllo.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Gentile.

Additional information

Communicated by D. Somers.

Gaetano Distefano and Marco Caruso have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 70 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Distefano, G., Caruso, M., La Malfa, S. et al. Histological and molecular analysis of pollen–pistil interaction in clementine. Plant Cell Rep 28, 1439–1451 (2009). https://doi.org/10.1007/s00299-009-0744-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-009-0744-9

Keywords

Navigation