Skip to main content

Advertisement

Log in

Monitoring therapeutic efficacy in breast carcinomas

  • Breast
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The aim of imaging during and after neoadjuvant therapy is to document and quantify tumor response: has the tumor size been accurately measured? Certainly, the most exciting information for the oncologists is: can we identify good or nonresponders, and can we predict the pathological response early after the initiation of treatment? This review article will discuss the role and the performance of the different imaging modalities (mammography, ultrasound, magnetic resonance imaging and FDG-PET imaging) for evaluating this therapeutic response. It is important to emphasize that, at this time, clinical examination and conventional imaging (mammography and ultrasound) are the only methods recognized by the international criteria. Magnetic resonance imaging and FDG-PET imaging are very promising for predicting the response early after the initiation of neoadjuvant chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bonadonna G, Vlagussa P, Brmabilla C et al (1998) Primary chemotherapy in operable breast cancer: eight-year experience at the Milan Cancer Institute. J Clin Oncol 16:93–100

    PubMed  CAS  Google Scholar 

  2. van der Hage JA, van de Velde CJ, Julien JP, Tubiana-Hulin M, Vandervelden C, Duchateau L (2001) Preoperative chemotherapy in primary operable breast cancer: results from the European Organization for Research and Treatment of Cancer trial 10902. J Clin Oncol 19:4224–4237

    PubMed  Google Scholar 

  3. Wolmark N, Wang J, Mamounas E, Bryant J, Fisher B (2001) Preoperative chemotherapy in patients with operable breast cancer: nine-year results from National Surgical Adjuvant Breast and Bowel Project B-18. J Natl Cancer Inst Monogr 96–102

  4. Newman LA, Buzdar AU, Singletary SE et al (2002) A prospective trial of preoperative chemotherapy in resectable breast cancer: predictors of breast-conserving therapy feasibility. Ann Surg Oncol 9:228–234

    Article  PubMed  Google Scholar 

  5. Fischer U, Kopka L, Grabbe E (1999) Breast carcinoma: effect of preoperative contrast-enhanced MR imaging on the therapeutic approach. Radiology 213:881–888

    PubMed  CAS  Google Scholar 

  6. Esserman L, Hylton N, Yassa L, Barclay J, Frankel S, Sickles E (1999) Utility of magnetic resonance imaging in the management of breast cancer: evidence for improved preoperative staging. J Clin Oncol 17(1):110

    PubMed  CAS  Google Scholar 

  7. Tillman BGF, Orel SG, Schnall MD, Schultz DJ, Tan JE, Solin LJ (2002) Effect of breast magnetic resonance imaging with early-stage breast carcinoma. J Clin Oncol 20(16):3413–3423

    Article  PubMed  Google Scholar 

  8. Bedrosian I, Mick R, Orel SG et al (2003) Changes in the surgical management of patients with breast carcinoma based on preoperative magnetic resonance imaging. Cancer 98:468–473

    Article  PubMed  Google Scholar 

  9. Sardanelli F, Giuseppetti GM, Panizza P et al (2004) Sensitivity of MRI versus mammography for detecting foci of multifocal, multicentric breast cancer in fatty and dense breasts using the whole-breast pathologic examination as a gold standard. Am J Roentgenol 183:1149–1157

    Google Scholar 

  10. Berg WA, Gutierrez L, Ness Aiver MS et al (2004) Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer. Radiology 233:830–849

    PubMed  Google Scholar 

  11. Therasse P, Arbuck SG, Eisenhauer EA et al (2000) New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst 92:205–216

    Article  PubMed  CAS  Google Scholar 

  12. Ollivier L, Vanel D, Leclère J (2002) Monitoring tumour response. Cancer Imaging 3:5–6

    Google Scholar 

  13. Helvie MA, Joynt LK, Cody RL et al (1996) Locally advanced breast carcinoma : accuracy of mammography vs clinical examination in the prediction of residual disease after chemotherapy. Radiology 198:327–332

    PubMed  CAS  Google Scholar 

  14. Vinnicombe SJ, MacVicar AD, Guy RL et al (1996) Primary breast cancer: mammographic changes after neoadjuvant chemotherapy, with pathologic correlation. Radiology 198:333–340

    PubMed  CAS  Google Scholar 

  15. Moskovic EC, Mansi JL, King DM et al (1993) Mammography in the assessment of response to medical treatment of large primary breast cancer. Clin Radiol 47:339–344

    Article  PubMed  CAS  Google Scholar 

  16. Huber S, Wagner M, Zuna I et al (2000) Locally advanced breast carcinoma: evaluation of mammography in the prediction of residual disease after induction chemotherapy. Anticancer Res 20:553–558

    PubMed  CAS  Google Scholar 

  17. Balu-Maestro C, Chapellier C, Bleuse A et al (2002) Imaging in evaluation of response to neoadjuvant breast cancer treatment benefits in MRI. Breast Cancer Res Treat 72:145–152

    Article  PubMed  CAS  Google Scholar 

  18. Fornage BD, Toubas O, Morel M (1987) Clinical, mammographic and sonographic determination of preoperative breast cancer size. Cancer 60:765–771

    Article  PubMed  CAS  Google Scholar 

  19. Herrada J, Iyer RB, Atkinson EN et al (1997) Relative value of physical examination, mammography, and breast sonography in evaluating the size of primary tumor and regional lymph node metastases in women receiving neoadjuvant chemotherapy for locally advanced breast carcinoma. Clin Cancer Res 3:1565–1569

    PubMed  CAS  Google Scholar 

  20. Schott ZF, Roubidoux MA, Helvie MA et al (2005) Clinical and radiological assessments to predict breast cancer pathologic complete response to neoadjuvant chemotherapy. Breast Cancer Res Treat 92:231–238

    Article  PubMed  CAS  Google Scholar 

  21. Roubidoux MA, Le Carpentier GL, Fowles JB et al (2005) Sonographic evaluation of early-stage breast cancers that undergo neoadjuvant chemotherapy. J Ultrasound Med 24:885–895

    PubMed  Google Scholar 

  22. Walsh R, Kornguth PJ, Soo MS, Bentley R, Delong DM (1997) Axillary lymph nodes; mammographic, pathologic and clinical correlation. AJR 168:33–38

    PubMed  CAS  Google Scholar 

  23. Feu J, Tresserra F, Fabregas R et al (1997) Metastatic breast carcinoma in axillary lymph nodes: in vitro US detection. Radiology 205:831–835

    PubMed  CAS  Google Scholar 

  24. Tschammler A, Ott G, Schang T, Seelbach-Goebel B, Schwager K, Hahn D (1998) Lymphadenopathy : differentiation of benign from malignant disease - color Doppler US assessment of intranodal angioarchitecture. Radiology 208:117–123

    PubMed  CAS  Google Scholar 

  25. Yang WT, Chang J, Metreweli C (2000) Patients with breast cancer : differences in color Doppler flow and gray-scale US features of benign and malignant axillary lymph nodes. Radiology 215:568–573

    PubMed  CAS  Google Scholar 

  26. Lernevall A (2000) Imaging of axillary lymph nodes. Act Oncol 39(3):277–281

    Article  CAS  Google Scholar 

  27. Balu-Maestro C, Cazenave F, Marcy PY, Tran C (1996) Evaluation de la réponse tumorale à la chimiothérapie par l’IRM et l’écho Doppler couleur. J Le Sein 3:194–202

    Google Scholar 

  28. Huber S, Medl M, Helblich T et al (2000) Locally advanced breast carcinoma: computer assisted semiquantitative analysis of color Doppler ultrasonography in the evaluation of tumor response to neoadjuvant chemotherapy (work in progress). J Ultrasound Med 19:601–607

    PubMed  CAS  Google Scholar 

  29. Singh S, Pradhan S, Shukla RC, Ansari MA, Kumar A (2005) Color Doppler ultrasound as an objective assessment tool for chemotherapeutic response in advanced breast cancer. Breast Cancer 12:45–51

    Article  PubMed  Google Scholar 

  30. Huber S, Helblich T, Kettenbach J, Dock W, Zuna I, Delorme S (1998) Effects of a microbubble agent on breast tumors: computer-assisted quantitative assessment with color Doppler US - Early experience. Radiology 208:485–489

    PubMed  CAS  Google Scholar 

  31. Vallone P, D’Angelo R, Filice S et al (2005) Color-Doppler using contrast medium in evaluating the response to neoadjuvant treatment in patients with locally advanced breast carcinoma. Anticancer Res 25:595–599

    PubMed  Google Scholar 

  32. Orel Greenstein S (2000) MR imaging of the breast. Radiol Clin North Am 38(4):899–913

    Article  PubMed  Google Scholar 

  33. Morris EA (2002) Breast cancer imaging with MRI. Radiol Clin North Am 40(3):443–466

    Article  PubMed  Google Scholar 

  34. Partbridge SC, Gibbs JE, Lu Y, Esserman LJ, Sudilovsky D, Hylton NM (2002) Accuracy of MR imaging for revealing residual breast cancer in patients who have undergone neoadjuvant chemotherapy. Am J Roentgenol 179:1193–1199

    Google Scholar 

  35. Rosen EL, Blackwell KL, Baker JA et al (2003) Accuracy of MRI in the detection of residual breast cancer after neoadjuvant chemotherapy. Am J Roentgenol 181:1275–1282

    Google Scholar 

  36. Thibault F, Nos C, Meunier M et al (2004) MRI for surgical planning in patients with breast cancer who undergo preoperative chemotherapy. Am J Roentgenol 183:1159–1168

    Google Scholar 

  37. Londero V, Bazzocchi M, Del Frate C et al (2004) Locally advanced breast cancer: comparison of mammography, sonography and MR imaging in evaluation of residual disease in women receiving neoadjuvant chemotherapy. Eur Radiol 14:1371–1379

    Article  PubMed  Google Scholar 

  38. Newman LA, Buzdar AU, Singletary SE et al (2002) A prospective trial of preoperative chemotherapy in resectable breast cancer: predictors of breast-conservation therapy feasibility. Ann Surg Oncol 9:228–234

    Article  PubMed  Google Scholar 

  39. Rieber A, Brambs HJ, Gabelmann A, Heilmann V, Kreienberg R, Kuhn T (2002) Breast MRI for monitoring response of primary breast cancer to neo-adjuvant chemotherapy. Eur Radiol 7:1711–1719

    Google Scholar 

  40. Warren RML, Bobrow LG, Earl HM et al (2004) Can breast MRI help in the management of women with breast cancer treated by neoadjuvant chemotherapy? Br J Cancer 90:1349–1360

    Article  PubMed  CAS  Google Scholar 

  41. Martincich L, Montemurro F, De Rosa G et al (2004) Monitoring response to primary chemotherapy in breast cancer using dynamic contrast-enhanced magnetic resonance imaging. Breast Cancer Res Treat 67–76

  42. Cheung YC, Chen SC, Su MY et al (2003) Monitoring the size and response of locally advanced breast cancers to neoadjuvant chemotherapy (weekly paclitaxel and epirubicin) with serial enhanced MRI. Breast Cancer Res Treat 78:51–58

    Article  PubMed  CAS  Google Scholar 

  43. Partbridge SC, Gibbs JE, Lu Y et al (2005) MRI measurements of breast tumor volume predict response to neoadjuvant chemotherapy and recurrence-free survival. Am J Roentgenol 184:1774–1781

    Google Scholar 

  44. Gilles R, Guinebretière JM, Toussaint C et al (1994) Locally advanced breast cancer: contrast-enhanced subtraction MR imaging of response to preoperative chemotherapy. Radiology 191:633–638

    PubMed  CAS  Google Scholar 

  45. Kuhl CK (2000) MRI of breast tumors. Eur Radiol 10:46–58

    Article  PubMed  CAS  Google Scholar 

  46. Rieber A, Zeitler H, Rosenthal H et al (1997) MRI of breast cancer: influence of chemotherapy on sensitivity. Br J Radiol 70:452–458

    PubMed  CAS  Google Scholar 

  47. Wasser K, Klein SK, Fink C et al (2003) Evaluation of neoadjuvant chemotherapeutic response of breast cancer using dynamic MRI with high temporal resolution. Eur Radiol 13:80–87

    PubMed  CAS  Google Scholar 

  48. Delille JP, Slanetz PJ, Yeh ED et al (2003) Invasive ductal breast carcinoma response to neoadjuvant chemotherapy: non-invasive monitoring with functional MR imaging - pilot study. Radiology 228:63–69

    PubMed  Google Scholar 

  49. El Khoury C, Servois V, Thibault F et al (2005) MR quantification of the washout changes in breast tumors under preoperative chemotherapy: feasibility and preliminary results. Am J Roentgenol 184:1499–1504

    Google Scholar 

  50. American College of Radiology Imaging Network, ACRIN 6657 trial. Website : http://www.acrin.org, current protocols section

  51. Daldrup-Link HE, Brasch RC (2003) Macromolecular contrast agents for MR mammography: current status. Eur Radiol 13:354–365

    PubMed  Google Scholar 

  52. Preda A, van Vliet M, Krestin GP, Brasch RC, van Dijke CF (2006) Magnetic resonance macromolecular agents for monitoring microvessels and angiogenesis inhibition. Inv Radiol 41:325–331

    Article  Google Scholar 

  53. Roebuck JR, Cecil KM, Schnall MD, Lenkinski RE (1998) Human breast lesions: characterization with proton MR spectroscopy. Radiology 209:269–275

    PubMed  CAS  Google Scholar 

  54. Kvistad KA, Bakken IJ, Gribbestad IS et al (1999) Characterization of neoplastic and normal human breast tissues with in vivo (1) H MR spectroscopy. J Magn Reson Imaging 10:159–164

    Article  PubMed  CAS  Google Scholar 

  55. Yeung DK, Yang WT, Tse GM (2002) Human breast cancer: in vivo proton MR spectroscopy in the characterization of histopathological subtypes and preliminary observations in axillary node metastases. Radiology 225:190–197

    PubMed  Google Scholar 

  56. Cecil KM, Schnall MD, Siegelman ES, Lenkinski RE (2001) The evaluation of human breast lesions with magnetic resonance imaging and proton magnetic resonance spectroscopy. Breast Cancer Res Treat 68:45–54

    Article  PubMed  CAS  Google Scholar 

  57. Tse GMK, Humairah Cheung S, Pang LM et al (2003) Characterization of lesions of the breast with proton MR spectroscopy: comparison of carcinomas, benign lesions, and phyllodes tumors. Am J Roentgenol 181:1267–1272

    Google Scholar 

  58. Jagannathan NR, Kumar M, Seenu V et al (2001) Evaluation of total choline from in vivo volume localized proton MR spectroscopy and its response to neoadjuvant chemotherapy in locally advanced breast cancer. Br J Cancer 84:1016–1022

    Article  PubMed  CAS  Google Scholar 

  59. Meisamy S, Bolan PJ, Baker EH et al (2004) Neoadjuvant chemotherapy of locally advanced breast cancer: predicting response with in vivo (1) H MR spectroscopy-a pilot study at 4 T. Radiology 233:424–431

    PubMed  Google Scholar 

  60. Quon A, Gambhir SS (2005) FDG-PET and beyond : molecular cancer imaging. J Xlin Oncol 23:1664–1673

    Article  CAS  Google Scholar 

  61. Schelling M, Avril N, Nahrig J et al (2000) Positron emission tomography using [(18)F]fluorodeoxyglucose for monitoring primary chemotherapy in breast cancer. J Clin Oncol 18:1689–1695

    PubMed  CAS  Google Scholar 

  62. Bassa P, Kim EE, Inoue T et al (1996) Evaluation of preoperative chemotherapy using PET with fluorine-18-fluorodeoxyglucose in breast cancer. J Nucl Med 37:931–938

    PubMed  CAS  Google Scholar 

  63. Gennari A, Donati S, Salvadori B et al (2000) Role of 2-[18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET) in the early assessment of response to chemotherapy in metastatic breast cancer patients. Clin Breast Cancer 1:156–161

    Article  PubMed  CAS  Google Scholar 

  64. Jansson T, Westlin JE, Ahlstrom H et al (1995) Positron emission tomography studies in patients with locally advanced and/or metastatic breast cancer. A method for early therapy evaluation? J Clin Oncol 13:1470–1477

    PubMed  CAS  Google Scholar 

  65. Mankoff DA, Dunnwald LK, Gralow JR et al (2002) Blood flow and metabolism in locally advanced breast cancer: Relationship to response to therapy. J Nucl Med 43:500–509

    PubMed  Google Scholar 

  66. Smith IC, Welch AE, Hutcheon AW et al (2000) Positron emission tomography using [18F]-fluorodeoxy-D-glucose to predict the pathologic response of breast cancer to primary chemotherapy. J Clin Oncol 18:1676–1688

    PubMed  CAS  Google Scholar 

  67. Stafford SE, Gralow JR, Schubert EK et al (2002) Use of serial FDG PET to measure the response of bone-dominated breast cancer to therapy. Acad Radiol 9:913–921

    Article  PubMed  Google Scholar 

  68. Tiling R, Linke R, Untch M et al (2001) 18F-FDG PET and 99mTc-sestamibi scintiomammography for monitoring breast cancer response to neoadjuvant chemotherapy: a comparative study. Eur J Nucl Med 28:711–720

    Article  PubMed  CAS  Google Scholar 

  69. Dehdashti F, Flanagan FL, Mortimer JE et al (1999) Positron emission tomographic assessment of “metabolic flare” to predict response of metastatic breast cancer to antiestrogen therapy. Eur J Nucl Med 26:51–56

    Article  PubMed  CAS  Google Scholar 

  70. Mortimer JE, Dehdashti F, Siegel BA et al (2001) Metabolic flare: indicator of hormone responsiveness in advanced breast cancer. J Clin Oncol 19:2797–2803

    PubMed  CAS  Google Scholar 

  71. Ciernik IF, Dizendorf E, Baumert BG et al (2003) Radiation treatment planning with an integrated positron emssion and computer tomography (PET/CT): a feasibility study. Int J Radiat Oncol Biol Phys 57:853–863

    Article  PubMed  Google Scholar 

  72. Giraud P, Grahek D, Montravers F et al (2001) (18)F-deoxyglucose (FDG) image fusion for optimization of conformal radiotherapy of lung cancers. Int J Radiat Oncol Biol Phys 49:1249–1257

    Article  PubMed  CAS  Google Scholar 

  73. Kelloff GJ, Krohn KA, Larson SM et al (2005) The progress and promise of molecular imaging probes in oncologic drug development. Clin Cancer Res 11:7967–7985

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne A. Tardivon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tardivon, A.A., Ollivier, L., El Khoury, C. et al. Monitoring therapeutic efficacy in breast carcinomas. Eur Radiol 16, 2549–2558 (2006). https://doi.org/10.1007/s00330-006-0317-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-006-0317-z

Keywords

Navigation