Skip to main content
Log in

Diagnostic value of 64-slice multi-detector row cardiac CTA in symptomatic patients

  • Cardiac
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Cardiac multi-detector-row computed tomography (MDCT) angiography has shown high levels of sensitivity and especially negative predictive value regarding the diagnosis of coronary artery disease (CAD). This study was designed to determine the value of a 64-slice-MDCT scanner in comparison to invasive coronary angiography for the detection of CAD in a population of symptomatic patients. Fifty-one patients with suspected CAD underwent conventional coronary angiography and ECG-gated cardiac 64-slice-MDCT angiography with a rotation time of 330 ms, a collimation of 64×0.6 mm and a slice thickness of 0.75 mm. Blinded patient- and segment-based analysis was performed for the detection of stenoses ≥70% of the vessel lumen. 95% of all coronary segments were assessable by MDCT angiography. Patient-based (segment-based) analysis revealed a sensitivity of 97.8% (86.7%), specificity of 50% (95.2%), positive predictive value of 93.6% (75.2%) and negative predictive value of 75% (97.7%). Inter-rater agreement revealed a kappa-value of 0.558 (0.722). In this symptomatic patient group a 64-slice-MDCT scanner shows good agreement on a segment-based analysis but only moderate agreement on a patient-based analysis. The diagnostic accuracy of 64-slice-MDCT coronary angiography is negatively influenced by the high pre-test probability of this symptomatic patient collective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kopp AF, Schroeder S, Baumbach A et al (2001) Non-invasive characterisation of coronary lesion morphology and composition by multislice CT: first results in comparison with intracoronary ultrasound. Eur Radiol 11:1607–1611

    Article  PubMed  CAS  Google Scholar 

  2. Knez A, Becker CR, Leber A et al (2001) Usefulness of multislice spiral computed tomography angiography for determination of coronary artery stenoses. Am J Cardiol 88:1191–1194

    Article  PubMed  CAS  Google Scholar 

  3. Achenbach S, Ulzheimer S, Baum U et al (2000) Noninvasive coronary angiography by retrospectively ECG-gated multislice spiral CT. Circulation 102:2823–2828

    PubMed  CAS  Google Scholar 

  4. Becker CR, Jakobs TF, Aydemir S et al (2000) Helical and single-slice conventional CT versus electron beam CT for the quantification of coronary artery calcification. Am J Roentgenol 174:543–547

    CAS  Google Scholar 

  5. Ropers D, Baum U, Pohle K et al (2003) Detection of coronary artery stenoses with thin-slice multi-detector row spiral computed tomography and multiplanar reconstruction. Circulation 107:664–666

    Article  PubMed  Google Scholar 

  6. AHA. (American Heart Association) (2004) Heart disease and stroke statistics-2004 update p10 and p40

  7. Kennedy JW (1982) Complications associated with cardiac catheterization and angiography. Cathet Cardiovasc Diagn 8:5–11

    PubMed  CAS  Google Scholar 

  8. Nieman K, Cademartiri F, Lemos PA, Raaijmakers R, Pattynama PM, de Feyter PJ (2002) Reliable noninvasive coronary angiography with fast submillimeter multislice spiral computed tomography. Circulation 106:2051–2054

    Article  PubMed  Google Scholar 

  9. Flohr T, Stierstorfer K, Raupach R, Ulzheimer S, Bruder H (2004) Performance evaluation of a 64-slice CT system with z-flying focal spot. Rofo 176:1803–1810

    PubMed  CAS  Google Scholar 

  10. Hoffmann U, Moselewski F, Cury RC et al (2004) Predictive value of 16-slice multidetector spiral computed tomography to detect significant obstructive coronary artery disease in patients at high risk for coronary artery disease: patient-versus segment-based analysis. Circulation 110:2638–2643

    Article  PubMed  Google Scholar 

  11. Leber AW, Knez A, von Ziegler F et al (2005) Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol 46:147–154

    Article  PubMed  Google Scholar 

  12. Kuettner A, Trabold T, Schroeder S et al (2004) Noninvasive detection of coronary lesions using 16-detector multislice spiral computed tomography technology: initial clinical results. J Am Coll Cardiol 44:1230–1237

    PubMed  Google Scholar 

  13. Raff GL, Gallagher MJ, O’Neill WW, Goldstein JA (2005) Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 46:552–557

    Article  PubMed  Google Scholar 

  14. Leschka S, Alkadhi H, Plass A et al (2005) Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J 26:1482–1487

    Article  PubMed  Google Scholar 

  15. Kuettner A, Burgstahler C, Beck T et al (2005) Coronary vessel visualization using true 16-row multi-slice computed tomography technology. Int J Cardiovasc Imaging 21:331–337

    Article  PubMed  Google Scholar 

  16. Becker CR (2005) Coronary CT angiography in symptomatic patients. Eur Radiol 15 Suppl 2:B33–B41

    PubMed  Google Scholar 

  17. Mollet NR, Cademartiri F, van Mieghem CA et al (2005) High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation 112:2318–2323

    Article  PubMed  Google Scholar 

  18. Saito K, Saito M, Komatu S, Ohtomo K (2003) Real-time four-dimensional imaging of the heart with multi-detector row CT. Radiographics 23:e8

    Google Scholar 

  19. Cademartiri F, Nieman K, van der Lugt A et al (2004) Intravenous contrast material administration at 16-detector row helical CT coronary angiography: test bolus versus bolus-tracking technique. Radiology 233:817–823

    PubMed  Google Scholar 

  20. Herzog C, Arning-Erb M, Zangos S et al (2006) Multi-detector row CT coronary angiography: influence of reconstruction technique and heart rate on image quality. Radiology 238:75–86

    PubMed  Google Scholar 

  21. Pugliese F, Mollet NR, Runza G et al (2006) Diagnostic accuracy of non-invasive 64-slice CT coronary angiography in patients with stable angina pectoris. Eur Radiol 16:575–582

    Article  PubMed  Google Scholar 

  22. Flohr TG, McCollough CH, Bruder H et al (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16:256–268

    Article  PubMed  Google Scholar 

  23. Johnson TR, Nikolaou K, Wintersperger BJ et al (2006) Dual-source CT cardiac imaging: initial experience. Eur Radiol 16:1409–1415

    Article  PubMed  Google Scholar 

  24. Nieman K, Oudkerk M, Rensing BJ et al (2001) Coronary angiography with multi-slice computed tomography. Lancet 357:599–603

    Article  PubMed  CAS  Google Scholar 

  25. Giesler T, Baum U, Ropers D et al (2002) Noninvasive visualization of coronary arteries using contrast-enhanced multidetector CT: influence of heart rate on image quality and stenosis detection. Am J Roentgenol 179:911–916

    Google Scholar 

  26. Kuettner A, Beck T, Drosch T et al (2005) Diagnostic accuracy of noninvasive coronary imaging using 16-detector slice spiral computed tomography with 188 ms temporal resolution. J Am Coll Cardiol 45:123–127

    Article  PubMed  Google Scholar 

  27. Stamm G, Nagel HD (2002) [CT-expo-a novel program for dose evaluation in CT]. Rofo 174:1570–1576

    PubMed  CAS  Google Scholar 

  28. Austen WG, Edwards JE, Frye RL et al (1975) A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation 51:5–40

    PubMed  CAS  Google Scholar 

  29. Kuettner A, Beck T, Drosch T et al (2005) Image quality and diagnostic accuracy of non-invasive coronary imaging with 16 detector slice spiral computed tomography with 188 ms temporal resolution. Heart 91:938–941

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Mühlenbruch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mühlenbruch, G., Seyfarth, T., Soo, C.S. et al. Diagnostic value of 64-slice multi-detector row cardiac CTA in symptomatic patients. Eur Radiol 17, 603–609 (2007). https://doi.org/10.1007/s00330-006-0429-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-006-0429-5

Keywords

Navigation