Skip to main content
Log in

Value of T2-weighted, first-pass and delayed enhancement, and cine CMR to differentiate between acute and chronic myocardial infarction

  • Cardiac
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The aim of this study was to analyze the diagnostic accuracy of edema on T2-weighted (T2w) cardiac magnetic resonance imaging (CMR), presence of microvascular obstruction (MO) on first-pass enhancement (FPE) or on delayed enhancement (DE) CMR, and wall thinning on cine CMR to differentiate between acute (AMI) and chronic myocardial infarction (CMI) in patients with infarction on DE-CMR. Fifty patients were imaged 5 ± 3 days (baseline) and 8 ± 3 months (follow-up) after AMI at 1.5 T. Imaging findings were graded as present or absent in a blinded consensus reading. Edema was present at baseline in 48 (96%) patients and absent at follow-up in 49 (98%) patients. At baseline, MO was present in 29 (58%) patients on FPE-CMR and in 24 (48%) patients on DE-CMR (P  = ns). At follow-up, persisting hypoenhancement was observed in ten (20%) patients on FPE-CMR, whereas two (4%) patients showed persisting hypoenhancement on DE-CMR (P<0.05). Wall thinning was present in 4 (8%) patients at baseline and in 20 (40%) patients at follow-up. Edema had high sensitivity (96%), specificity (98%), and accuracy (97%) to differentiate between AMI and CMI. Accuracy of all other imaging findings was lower compared to that of edema (P<0.001). In the presence of infarction on DE-CMR, T2w-CMR reliably differentiates between AMI and CMI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Judd RM, Lugo-Olivieri CH, Arai M, Kondo T, Croisille P, Lima JA, Mohan V, Becker LC, Zerhouni EA (1995) Physiological basis of myocardial contrast enhancement in fast magnetic resonance images of 2-day-old reperfused canine infarcts. Circulation 92:1902–1910

    PubMed  CAS  Google Scholar 

  2. Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, Klocke FJ, Bonow RO, Judd RM (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343:1445–1453

    Article  PubMed  CAS  Google Scholar 

  3. Saeed M, Lund G, Wendland MF, Bremerich J, Weinmann H, Higgins CB (2001) Magnetic resonance characterization of the peri-infarction zone of reperfused myocardial infarction with necrosis-specific and extracellular nonspecific contrast media. Circulation 103:871–876

    PubMed  CAS  Google Scholar 

  4. Klein C, Nekolla SG, Bengel FM, Momose M, Sammer A, Haas F, Schnackenburg B, Delius W, Mudra H, Wolfram D, Schwaiger M (2002) Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging: comparison with positron emission tomography. Circulation 105:162–167

    Article  PubMed  Google Scholar 

  5. Lund GK, Stork A, Saeed M, Bansmann MP, Gerken JH, Muller V, Mester J, Higgins CB, Adam G, Meinertz T (2004) Acute myocardial infarction: evaluation with first-pass enhancement and delayed enhancement MR imaging compared with 201Tl SPECT imaging. Radiology 232:49–57

    PubMed  Google Scholar 

  6. Saeed M, Lee RJ, Weber O, Do L, Martin A, Ursell P, Saloner D, Higgins CB (2006) Scarred myocardium imposes additional burden on remote viable myocardium despite a reduction in the extent of area with late contrast MR enhancement. Eur Radiol 16:827–836

    Article  PubMed  Google Scholar 

  7. Abdel-Aty H, Zagrosek A, Schulz-Menger J, Taylor AJ, Messroghli D, Kumar A, Gross M, Dietz R, Friedrich MG (2004) Delayed enhancement and T2-weighted cardiovascular magnetic resonance imaging differentiate acute from chronic myocardial infarction. Circulation 109:2411–2416

    Article  PubMed  Google Scholar 

  8. DiBona DR, Powell WJ Jr (1980) Quantitative correlation between cell swelling and necrosis in myocardial ischemia in dogs. Circ Res 47:653–665

    PubMed  CAS  Google Scholar 

  9. Jennings RB, Schaper J, Hill ML, Steenbergen C Jr, Reimer KA (1985) Effect of reperfusion late in the phase of reversible ischemic injury. Changes in cell volume, electrolytes, metabolites, and ultrastructure. Circ Res 56:262–278

    PubMed  CAS  Google Scholar 

  10. Simonetti OP, Finn JP, White RD, Laub G, Henry DA (1996) “Black blood” T2-weighted inversion-recovery MR imaging of the heart. Radiology 199:49–57

    PubMed  CAS  Google Scholar 

  11. Lim TH, Hong MK, Lee JS, Mun CW, Park SJ, Park SW, Ryu JS, Lee JH, Chien D, Laub G (1997) Novel application of breath-hold turbo spin-echo T2 MRI for detection of acute myocardial infarction. J Magn Reson Imaging 7:996–1001

    PubMed  CAS  Google Scholar 

  12. Miller S, Helber U, Kramer U, Hahn U, Carr J, Stauder NI, Hoffmeister HM, Claussen CD (2001) Subacute myocardial infarction: assessment by STIR T2-weighted MR imaging in comparison to regional function. MAGMA 13:8–14

    PubMed  CAS  Google Scholar 

  13. Stork A, Lund GK, Muellerleile K, Bansmann M, Nolte-Ernsting C, Kemper J, Begemann PGC, Adam G (2006) Characterization of the peri-infarction zone using T2-weighted MRI and delayed-enhancement MRI in patients with acute myocardial infarction. Eur Radiol DOI 10.1007/s00330-006-0232-3

  14. Schulz-Menger J, Gross M, Messroghli D, Uhlich F, Dietz R, Friedrich MG (2003) Cardiovascular magnetic resonance of acute myocardial infarction at a very early stage. J Am Coll Cardiol 42:513–518

    Article  PubMed  Google Scholar 

  15. Kloner RA, Ganote CE, Jennings RB (1974) The “no-reflow” phenomenon after temporary coronary occlusion in the dog. J Clin Invest 54:1496–1508

    PubMed  CAS  Google Scholar 

  16. Rochitte CE, Lima JA, Bluemke DA, Reeder SB, McVeigh ER, Furuta T, Becker LC, Melin JA (1998) Magnitude and time course of microvascular obstruction and tissue injury after acute myocardial infarction. Circulation 98:1006–1014

    PubMed  CAS  Google Scholar 

  17. Wu KC, Zerhouni EA, Judd RM, Lugo-Olivieri CH, Barouch LA, Schulman SP, Blumenthal RS, Lima JA (1998) Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation 97:765–772

    PubMed  CAS  Google Scholar 

  18. Kaul S, Ito H (2004) Microvasculature in acute myocardial ischemia: part II: evolving concepts in pathophysiology, diagnosis, and treatment. Circulation 109:310–315

    Article  PubMed  Google Scholar 

  19. Eeckhout E, Kern MJ (2001) The coronary no-reflow phenomenon: a review of mechanisms and therapies. Eur Heart J 22:729–739

    Article  PubMed  CAS  Google Scholar 

  20. Reiner JS, Lundergan CF, Fung A, Coyne K, Cho S, Israel N, Kazmierski J, Pilcher G, Smith J, Rohrbeck S, Thompson M, Van de Werf F, Ross AM (1996) Evolution of early TIMI 2 flow after thrombolysis for acute myocardial infarction. GUSTO-1 Angiographic Investigators. Circulation 94:2441–2446

    PubMed  CAS  Google Scholar 

  21. Neumann FJ, Blasini R, Schmitt C, Alt E, Dirschinger J, Gawaz M, Kastrati A, Schomig A (1998) Effect of glycoprotein IIb/IIIa receptor blockade on recovery of coronary flow and left ventricular function after the placement of coronary-artery stents in acute myocardial infarction. Circulation 98:2695–2701

    PubMed  CAS  Google Scholar 

  22. Baer FM, Smolarz K, Jungehulsing M, Beckwilm J, Theissen P, Sechtem U, Schicha H, Hilger HH (1992) Chronic myocardial infarction: assessment of morphology, function, and perfusion by gradient echo magnetic resonance imaging and 99mTc-methoxyisobutyl-isonitrile SPECT. Am Heart J 123:636–645

    Article  PubMed  CAS  Google Scholar 

  23. Stehling MK, Holzknecht NG, Laub G, Bohm D, von Smekal A, Reiser M (1996) Single-shot T1- and T2-weighted magnetic resonance imaging of the heart with black blood: preliminary experience. MAGMA 4:231–240

    Article  PubMed  CAS  Google Scholar 

  24. Whalen DA Jr, Hamilton DG, Ganote CE, Jennings RB (1974) Effect of a transient period of ischemia on myocardial cells. I. Effects on cell volume regulation. Am J Pathol 74:381–397

    PubMed  CAS  Google Scholar 

  25. Garcia-Dorado D, Oliveras J, Gili J, Sanz E, Perez-Villa F, Barrabes J, Carreras MJ, Solares J, Soler-Soler J (1993) Analysis of myocardial oedema by magnetic resonance imaging early after coronary artery occlusion with or without reperfusion. Cardiovasc Res 27:1462–1469

    Article  PubMed  CAS  Google Scholar 

  26. Nilsson JC, Nielsen G, Groenning BA, Fritz-Hansen T, Sondergaard L, Jensen GB, Larsson HB (2001) Sustained postinfarction myocardial oedema in humans visualised by magnetic resonance imaging. Heart 85:639–642

    Article  PubMed  CAS  Google Scholar 

  27. Krauss XH, van der Wall EE, van der Laarse A, Doornbos J, de Roos A, Matheijssen NA, van Dijkman PR, van Voorthuisen AE, Bruschke AV (1990) Follow-up of regional myocardial T2 relaxation times in patients with myocardial infarction evaluated with magnetic resonance imaging. Eur J Radiol 11:110–119

    Article  PubMed  CAS  Google Scholar 

  28. Hombach V, Grebe O, Merkle N, Waldenmaier S, Hoher M, Kochs M, Wohrle J, Kestler HA (2005) Sequelae of acute myocardial infarction regarding cardiac structure and function and their prognostic significance as assessed by magnetic resonance imaging. Eur Heart J 26:549–557

    Article  PubMed  Google Scholar 

  29. Stone GW, Grines CL, Cox DA, Garcia E, Tcheng JE, Griffin JJ, Guagliumi G, Stuckey T, Turco M, Carroll JD, Rutherford BD, Lansky AJ (2002) Comparison of angioplasty with stenting, with or without abciximab, in acute myocardial infarction. N Engl J Med 346:957–966

    Article  PubMed  CAS  Google Scholar 

  30. Olivari Z, Rubartelli P, Piscione F, Ettori F, Fontanelli A, Salemme L, Giachero C, Di Mario C, Gabrielli G, Spedicato L, Bedogni F (2003) Immediate results and one-year clinical outcome after percutaneous coronary interventions in chronic total occlusions: data from a multicenter, prospective, observational study (TOAST-GISE). J Am Coll Cardiol 41:1672–1678

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Stork.

Additional information

This study was funded in part by the Pinguin-Stiftung, Düsseldorf, Germany and by the Schering Company, Berlin, Germany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stork, A., Muellerleile, K., Bansmann, P.M. et al. Value of T2-weighted, first-pass and delayed enhancement, and cine CMR to differentiate between acute and chronic myocardial infarction. Eur Radiol 17, 610–617 (2007). https://doi.org/10.1007/s00330-006-0460-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-006-0460-6

Keywords

Navigation