Skip to main content
Log in

Influence of coronary artery disease prevalence on predictive values of coronary CT angiography: a meta-regression analysis

  • Cardiac
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

To evaluate the impact of coronary artery disease (CAD) prevalence on the predictive values of coronary CT angiography.

Methods

We performed a meta-regression based on a generalised linear mixed model using the binomial distribution and a logit link to analyse the influence of the prevalence of CAD in published studies on the per-patient negative and positive predictive values of CT in comparison to conventional coronary angiography as the reference standard. A prevalence range in which the negative predictive value was higher than 90%, while at the same time the positive predictive value was higher than 70% was considered appropriate.

Results

The summary negative and positive predictive values of coronary CT angiography were 93.7% (95% confidence interval [CI] 92.8–94.5%) and 87.5% (95% CI, 86.5–88.5%), respectively. With 95% confidence, negative and positive predictive values higher than 90% and 70% were available with CT for a CAD prevalence of 18–63%. CT systems with >16 detector rows met these requirements for the positive (P < 0.01) and negative (P < 0.05) predictive values in a significantly broader range than systems with ≤16 detector rows.

Conclusion

It is reasonable to perform coronary CT angiography as a rule-out test in patients with a low-to-intermediate likelihood of disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Achenbach S (2006) Computed tomography coronary angiography. J Am Coll Cardiol 48:1919–1928

    Article  PubMed  Google Scholar 

  2. Dewey M (2009) Coronary CT angiography. Springer, Berlin-Heidelberg

    Google Scholar 

  3. Redberg RF, Walsh J (2008) Pay now, benefits may follow–the case of cardiac computed tomographic angiography. N Engl J Med 359:2309–2311

    Article  PubMed  CAS  Google Scholar 

  4. Lauer MS (2009) CT angiography: first things first. Circ Cardiovasc Imaging 2:1–3

    Article  PubMed  Google Scholar 

  5. Goldstein JA, Gallagher MJ, O’Neill WW, Ross MA, O’Neil BJ, Raff GL (2007) A randomized controlled trial of multi-slice coronary computed tomography for evaluation of acute chest pain. J Am Coll Cardiol 49:863–871

    Article  PubMed  Google Scholar 

  6. Raff GL, Chinnaiyan KM, Berman DS et al (2009) Coronary computed tomography for systematic triage of acute chest pain patients to treatment—(The CT-STAT Trial). Circulation 120:2160

    Google Scholar 

  7. Meijboom WB, van Mieghem CA, Mollet NR et al (2007) 64-slice computed tomography coronary angiography in patients with high, intermediate, or low pretest probability of significant coronary artery disease. J Am Coll Cardiol 50:1469–1475

    Article  PubMed  Google Scholar 

  8. Husmann L, Schepis T, Scheffel H et al (2008) Comparison of diagnostic accuracy of 64-slice computed tomography coronary angiography in patients with low, intermediate, and high cardiovascular risk. Acad Radiol 15:452–461

    Article  PubMed  Google Scholar 

  9. Leber AW, Johnson T, Becker A et al (2007) Diagnostic accuracy of dual-source multi-slice CT-coronary angiography in patients with an intermediate pretest likelihood for coronary artery disease. Eur Heart J 28:2354–2360

    Article  PubMed  Google Scholar 

  10. Dewey M, Teige F, Schnapauff D et al (2006) Noninvasive detection of coronary artery stenoses with multislice computed tomography or magnetic resonance imaging. Ann Intern Med 145:407–415

    PubMed  Google Scholar 

  11. Diamond GA, Forrester JS (1979) Analysis of probability as an aid in the clinical diagnosis of coronary-artery disease. N Engl J Med 300:1350–1358

    Article  PubMed  CAS  Google Scholar 

  12. Morise AP, Haddad WJ, Beckner D (1997) Development and validation of a clinical score to estimate the probability of coronary artery disease in men and women presenting with suspected coronary disease. Am J Med 102:350–356

    Article  PubMed  CAS  Google Scholar 

  13. Pryor DB, Shaw L, McCants CB et al (1993) Value of the history and physical in identifying patients at increased risk for coronary artery disease. Ann Intern Med 118:81–90

    PubMed  CAS  Google Scholar 

  14. Whiting P, Rutjes AW, Reitsma JB, Glas AS, Bossuyt PM, Kleijnen J (2004) Sources of variation and bias in studies of diagnostic accuracy: a systematic review. Ann Intern Med 140:189–202

    PubMed  Google Scholar 

  15. Schuetz GM, Zacharopoulou NM, Schlattmann P, Dewey M (2010) Meta-analysis: noninvasive coronary angiography using computed tomography versus magnetic resonance imaging. Ann Intern Med 152:167–177

    PubMed  Google Scholar 

  16. Altman D, Machin D, Bryant T, Gardner M (2000) Statistics with confidence. In: BMJ books, London. pp 108–110

  17. Altman D, Machin D, Bryant T, Gardner M (2000) Statistics with confidence. In: BMJ books, London, pp 50–55

  18. Hamza TH, Reitsma JB, Stijnen T (2008) Meta-analysis of diagnostic studies: a comparison of random intercept, normal-normal, and binomial-normal bivariate summary ROC approaches. Med Decis Mak 28:639–649

    Article  Google Scholar 

  19. Skrondal A, Rabe-Hesketh S (2009) Prediction in multilevel generalized linear models. J R Statist Soc A 172:659–687

    Article  Google Scholar 

  20. Skrondal A, Rabe-Hesketh S (2004) Generalized latent variable modeling: multilevel, Longitudinal and structural equation models. Chapman& Hall/CRC, Boca Raton

    Book  Google Scholar 

  21. Ropers D, Baum U, Pohle K et al (2003) Detection of coronary artery stenoses with thin-slice multi-detector row spiral computed tomography and multiplanar reconstruction. Circulation 107:664–666

    Article  PubMed  Google Scholar 

  22. Moon JY, Chung N, Choi BW et al (2005) The utility of multi-detector row spiral CT for detection of coronary artery stenoses. Yonsei Med J 46:86–94

    Article  PubMed  Google Scholar 

  23. Deetjen AG, Conradi G, Mollmann S et al (2007) Diagnostic value of the 16-detector row multislice spiral computed tomography for the detection of coronary artery stenosis in comparison to invasive coronary angiography. Clin Cardiol 30:118–123

    Article  PubMed  Google Scholar 

  24. Coles DR, Wilde P, Oberhoff M, Rogers CA, Karsch KR, Baumbach A (2007) Multislice computed tomography coronary angiography in patients admitted with a suspected acute coronary syndrome. Int J Cardiovasc Imaging 23:603–614

    Article  PubMed  Google Scholar 

  25. Hoffmann U, Moselewski F, Cury RC et al (2004) Predictive value of 16-slice multidetector spiral computed tomography to detect significant obstructive coronary artery disease in patients at high risk for coronary artery disease: patient-versus segment-based analysis. Circulation 110:2638–2643

    Article  PubMed  Google Scholar 

  26. Mollet NR, Cademartiri F, Nieman K et al (2004) Multislice spiral computed tomography coronary angiography in patients with stable angina pectoris. J Am Coll Cardiol 43:2265–2270

    Article  PubMed  Google Scholar 

  27. Achenbach S, Ropers D, Pohle FK et al (2005) Detection of coronary artery stenoses using multi-detector CT with 16 × 0.75 collimation and 375 ms rotation. Eur Heart J 26:1978–1986

    Article  PubMed  Google Scholar 

  28. Hoffmann MH, Shi H, Schmitz BL et al (2005) Noninvasive coronary angiography with multislice computed tomography. JAMA 293:2471–2478

    Article  PubMed  CAS  Google Scholar 

  29. Kaiser C, Bremerich J, Haller S et al (2005) Limited diagnostic yield of non-invasive coronary angiography by 16-slice multi-detector spiral computed tomography in routine patients referred for evaluation of coronary artery disease. Eur Heart J 26:1987–1992

    Article  PubMed  Google Scholar 

  30. Kefer J, Coche E, Legros G et al (2005) Head-to-head comparison of three-dimensional navigator-gated magnetic resonance imaging and 16-slice computed tomography to detect coronary artery stenosis in patients. J Am Coll Cardiol 46:92–100

    Article  PubMed  Google Scholar 

  31. Mollet NR, Cademartiri F, Krestin GP et al (2005) Improved diagnostic accuracy with 16-row multi-slice computed tomography coronary angiography. J Am Coll Cardiol 45:128–132

    Article  PubMed  Google Scholar 

  32. Morgan-Hughes GJ, Roobottom CA, Owens PE, Marshall AJ (2005) Highly accurate coronary angiography with submillimetre, 16 slice computed tomography. Heart 91:308–313

    Article  PubMed  CAS  Google Scholar 

  33. Bonmassari R, Muraglia S, Centonze M, Coser D, Stoppa G, Disertori M (2006) Noninvasive detection of coronary artery stenosis with 16-slice spiral computed tomography in a population at low to moderate risk for coronary artery disease. J Cardiovasc Med (Hagerstown) 7:817–825

    Article  Google Scholar 

  34. Erdogan N, Akar N, Vural M et al (2006) Diagnostic value of 16-slice multidetector computed tomography in symptomatic patients with suspected significant obstructive coronary artery disease. Heart Vessels 21:278–284

    Article  PubMed  Google Scholar 

  35. Garcia MJ, Lessick J, Hoffmann MH (2006) Accuracy of 16-row multidetector computed tomography for the assessment of coronary artery stenosis. JAMA 296:403–411

    Article  PubMed  CAS  Google Scholar 

  36. Ghersin E, Litmanovich D, Dragu R et al (2006) 16-MDCT coronary angiography versus invasive coronary angiography in acute chest pain syndrome: a blinded prospective study. AJR Am J Roentgenol 186:177–184

    Article  PubMed  Google Scholar 

  37. Gilard M, Cornily JC, Pennec PY et al (2006) Accuracy of multislice computed tomography in the preoperative assessment of coronary disease in patients with aortic valve stenosis. J Am Coll Cardiol 47:2020–2024

    Article  PubMed  Google Scholar 

  38. Henneman MM, Schuijf JD, Jukema JW et al (2006) Comprehensive cardiac assessment with multislice computed tomography: evaluation of left ventricular function and perfusion in addition to coronary anatomy in patients with previous myocardial infarction. Heart 92:1779–1783

    Article  PubMed  CAS  Google Scholar 

  39. Kolnes K, Velle OH, Hareide S, Hegbom K, Wiseth R (2006) Multislice computed tomography coronary angiography at a local hospital: pitfalls and potential. Acta Radiol 47:680–686

    Article  PubMed  CAS  Google Scholar 

  40. Nikolaou K, Rist C, Wintersperger BJ et al (2006) Clinical value of MDCT in the diagnosis of coronary artery disease in patients with a low pretest likelihood of significant disease. Am J Roentgenol 186:1659–1668

    Article  Google Scholar 

  41. Olivetti L, Mazza G, Volpi D, Costa F, Ferrari O, Pirelli S (2006) Multislice CT in emergency room management of patients with chest pain and medium-low probability of acute coronary syndrome. Radiol Med (Torino) 111:1054–1063

    Article  CAS  Google Scholar 

  42. Reant P, Brunot S, Lafitte S et al (2006) Predictive value of noninvasive coronary angiography with multidetector computed tomography to detect significant coronary stenosis before valve surgery. Am J Cardiol 97:1506–1510

    Article  PubMed  Google Scholar 

  43. Rodevand O, Hogalmen G, Gudim LP, Indrebo T, Molstad P, Vandvik PO (2006) Limited usefulness of non-invasive coronary angiography with 16-detector multislice computer tomography at a community hospital. Scand Cardiovasc J 40:76–82

    Article  PubMed  Google Scholar 

  44. Andreini D, Pontone G, Pepi M et al (2007) Diagnostic accuracy of multidetector computed tomography coronary angiography in patients with dilated cardiomyopathy. J Am Coll Cardiol 49:2044–2050

    Article  PubMed  Google Scholar 

  45. Carrascosa P, Capunay C, Bettinotti M et al (2007) Feasibility of gadolinium-diethylene triamine pentaacetic acid enhanced multidetector computed tomography for the evaluation of coronary artery disease. J Cardiovasc Comput Tomogr 1:86–94

    Article  PubMed  Google Scholar 

  46. Chow BJ, Dennie C, Hoffmann U et al (2007) Comparison of computed tomographic angiography versus rubidium-82 positron emission tomography for the detection of patients with anatomical coronary artery disease. Can J Cardiol 23:801–807

    PubMed  Google Scholar 

  47. Cornily JC, Gilard M, Le Gal G et al (2007) Accuracy of 16-detector multislice spiral computed tomography in the initial evaluation of dilated cardiomyopathy. Eur J Radiol 61:84–90

    Article  PubMed  Google Scholar 

  48. Davin L, Lancellotti P, Bruyere PJ, Gach O, Pierard L, Legrand V (2007) Diagnostic accuracy of computed tomography coronary angiography in routine practice. Acta Cardiol 62:339–344

    Article  PubMed  Google Scholar 

  49. Laissy JP, Messika-Zeitoun D, Serfaty JM et al (2007) Comprehensive evaluation of preoperative patients with aortic valve stenosis: usefulness of cardiac multidetector computed tomography. Heart 93:1121–1125

    Article  PubMed  Google Scholar 

  50. Maintz D, Ozgun M, Hoffmeier A et al (2007) Whole-heart coronary magnetic resonance angiography: value for the detection of coronary artery stenoses in comparison to multislice computed tomography angiography. Acta Radiol 48:967–973

    Article  PubMed  CAS  Google Scholar 

  51. Manghat NE, Morgan-Hughes GJ, Shaw SR et al (2007) Multi-detector row CT coronary angiography in patients with cardiomyopathy—initial single-centre experience. Clin Radiol 62:632–638

    Article  PubMed  CAS  Google Scholar 

  52. Pontone G, Andreini D, Ballerini G, Nobili E, Pepi M (2007) Diagnostic work-up of unselected patients with suspected coronary artery disease: complementary role of multidetector computed tomography, symptoms and electrocardiogram stress test. Coron Artery Dis 18:265–274

    Article  PubMed  Google Scholar 

  53. Postel T, Frick M, Feuchtner G et al (2007) Role of 16-multidetector computed tomography in the assessment of coronary artery stenoses: a prospective study of consecutive patients. Exp Clin Cardiol 12:149–152

    PubMed  Google Scholar 

  54. Romeo F, Leo R, Clementi F et al (2007) Multislice computed tomography in an asymptomatic high-risk population. Am J Cardiol 99:325–328

    Article  PubMed  Google Scholar 

  55. Turkvatan A, Biyikoglu SF, Buyukbayraktar F, Olcer T, Cumhur T, Duru E (2008) Clinical value of 16-slice multidetector computed tomography in symptomatic patients with suspected coronary artery disease. Acta Radiol 49:400–408

    Article  PubMed  CAS  Google Scholar 

  56. Langer C, Peterschroder A, Franzke K et al (2009) Noninvasive coronary angiography focusing on calcification: multislice computed tomography compared with magnetic resonance imaging. J Comput Assist Tomogr 33:179–185

    Article  PubMed  Google Scholar 

  57. Hausleiter J, Meyer T, Hadamitzky M et al (2007) Non-invasive coronary computed tomographic angiography for patients with suspected coronary artery disease: the Coronary Angiography by Computed Tomography with the Use of a Submillimeter resolution (CACTUS) trial. Eur Heart J 28:3034–3041

    Article  PubMed  Google Scholar 

  58. Grosse C, Globits S, Hergan K (2007) Forty-slice spiral computed tomography of the coronary arteries: assessment of image quality and diagnostic accuracy in a non-selected patient population. Acta Radiol 48:36–44

    Article  PubMed  CAS  Google Scholar 

  59. Halon DA, Gaspar T, Adawi S et al (2007) Uses and limitations of 40 slice multi-detector row spiral computed tomography for diagnosing coronary lesions in unselected patients referred for routine invasive coronary angiography. Cardiology 108:200–209

    Article  PubMed  Google Scholar 

  60. Tsai IC, Lee T, Lee WL et al (2007) Use of 40-detector row computed tomography before catheter coronary angiography to select early conservative versus early invasive treatment for patients with low-risk acute coronary syndrome. J Comput Assist Tomogr 31:258–264

    Article  PubMed  Google Scholar 

  61. Watkins MW, Hesse B, Green CE et al (2007) Detection of coronary artery stenosis using 40-channel computed tomography with multi-segment reconstruction. Am J Cardiol 99:175–181

    Article  PubMed  Google Scholar 

  62. Pouleur A-C, le Polain de Waroux J-B, Kefer J, Pasquet A, Vanoverschelde J-L, Gerber BL (2008) Direct comparison of whole-heart navigator-gated magnetic resonance coronary angiography and 40- and 64-slice multidetector row computed tomography to detect the coronary artery stenosis in patients scheduled for conventional coronary angiography; 10.1161/CIRCIMAGING.107.756304. Circ Cardiovasc Imaging 1:114–121

    Article  PubMed  Google Scholar 

  63. Leschka S, Alkadhi H, Plass A et al (2005) Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J 26:1482–1487

    Article  PubMed  Google Scholar 

  64. Mollet NR, Cademartiri F, van Mieghem CAG et al (2005) High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation 112:2318–2323

    Article  PubMed  Google Scholar 

  65. Raff GL, Gallagher MJ, O’Neill WW, Goldstein JA (2005) Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 46:552–557

    Article  PubMed  Google Scholar 

  66. Ehara M, Surmely JF, Kawai M et al (2006) Diagnostic accuracy of 64-slice computed tomography for detecting angiographically significant coronary artery stenosis in an unselected consecutive patient population: comparison with conventional invasive angiography. Circ J 70:564–571

    Article  PubMed  Google Scholar 

  67. Ghostine S, Caussin C, Daoud B et al (2006) Non-invasive detection of coronary artery disease in patients with left bundle branch block using 64-slice computed tomography. J Am Coll Cardiol 48:1929–1934

    Article  PubMed  Google Scholar 

  68. Meijboom WB, Mollet NR, Van Mieghem CA et al (2006) Pre-operative computed tomography coronary angiography to detect significant coronary artery disease in patients referred for cardiac valve surgery. J Am Coll Cardiol 48:1658–1665

    Article  PubMed  Google Scholar 

  69. Nikolaou K, Knez A, Rist C et al (2006) Accuracy of 64-MDCT in the diagnosis of ischemic heart disease. AJR Am J Roentgenol 187:111–117

    Article  PubMed  Google Scholar 

  70. Pugliese F, Mollet NR, Runza G et al (2006) Diagnostic accuracy of non-invasive 64-slice CT coronary angiography in patients with stable angina pectoris. Eur Radiol 16:575–582

    Article  PubMed  Google Scholar 

  71. Ropers D, Rixe J, Anders K et al (2006) Usefulness of multidetector row spiral computed tomography with 64- × 0.6-mm collimation and 330-ms rotation for the noninvasive detection of significant coronary artery stenoses. Am J Cardiol 97:343–348

    Article  PubMed  Google Scholar 

  72. Cademartiri F, Maffei E, Palumbo A et al (2007) Diagnostic accuracy of 64-slice computed tomography coronary angiography in patients with low-to-intermediate risk. Radiol Med 112:969–981

    Article  PubMed  CAS  Google Scholar 

  73. Hacker M, Jakobs T, Hack N et al (2007) Combined use of 64-slice computed tomography angiography and gated myocardial perfusion SPECT for the detection of functionally relevant coronary artery stenoses. First results in a clinical setting concerning patients with stable angina. Nuklearmedizin 46:29–35

    PubMed  CAS  Google Scholar 

  74. Herzog C, Zwerner PL, Doll JR et al (2007) Significant coronary artery stenosis: comparison on per-patient and per-vessel or per-segment basis at 64-section CT angiography. Radiology 244:112–120

    Article  PubMed  Google Scholar 

  75. Herzog C, Nguyen SA, Savino G et al (2007) Does two-segment image reconstruction at 64-section CT coronary angiography improve image quality and diagnostic accuracy? Radiology 244:121–129

    Article  PubMed  Google Scholar 

  76. Meijboom WB, Mollet NR, Van Mieghem CA et al (2007) 64-Slice CT coronary angiography in patients with non-ST elevation acute coronary syndrome. Heart 93:1386–1392

    Article  PubMed  Google Scholar 

  77. Oncel D, Oncel G, Tastan A, Tamci B (2007) Detection of significant coronary artery stenosis with 64-section MDCT angiography. Eur J Radiol 62:394–405

    Article  PubMed  Google Scholar 

  78. Scheffel H, Leschka S, Plass A et al (2007) Accuracy of 64-slice computed tomography for the preoperative detection of coronary artery disease in patients with chronic aortic regurgitation. Am J Cardiol 100:701–706

    Article  PubMed  Google Scholar 

  79. Shabestari AA, Abdi S, Akhlaghpoor S et al (2007) Diagnostic performance of 64-channel multislice computed tomography in assessment of significant coronary artery disease in symptomatic subjects. Am J Cardiol 99:1656–1661

    Article  PubMed  Google Scholar 

  80. Leschka S, Scheffel H, Husmann L et al (2008) Effect of decrease in heart rate variability on the diagnostic accuracy of 64-MDCT coronary angiography. AJR Am J Roentgenol 190:1583–1590

    Article  PubMed  Google Scholar 

  81. Ulimoen GR, Gjonnaess E, Atar D, Dahl T, Stranden E, Sandbaek G (2008) Noninvasive coronary angiography with 64-channel multidetector computed tomography in patients with acute coronary syndrome. Acta Radiol 49:1140–1144

    Article  PubMed  CAS  Google Scholar 

  82. Meijboom WB, Meijs MF, Schuijf JD et al (2008) Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol 52:2135–2144

    Article  PubMed  Google Scholar 

  83. Scheffel H, Alkadhi H, Plass A et al (2006) Accuracy of dual-source CT coronary angiography: first experience in a high pre-test probability population without heart rate control. Eur Radiol 16:2739–2747

    Article  PubMed  Google Scholar 

  84. Leschka S, Scheffel H, Desbiolles L et al (2008) Combining dual-source computed tomography coronary angiography and calcium scoring: added value for the assessment of coronary artery disease. Heart 94:1154–1161

    Article  PubMed  CAS  Google Scholar 

  85. Oncel D, Oncel G, Tastan A (2007) Effectiveness of dual-source CT coronary angiography for the evaluation of coronary artery disease in patients with atrial fibrillation: initial experience. Radiology 245:703–711

    Article  PubMed  Google Scholar 

  86. Ropers U, Ropers D, Pflederer T et al (2007) Influence of heart rate on the diagnostic accuracy of dual-source computed tomography coronary angiography. J Am Coll Cardiol 50:2393–2398

    Article  PubMed  Google Scholar 

  87. Weustink AC, Meijboom WB, Mollet NR et al (2007) Reliable high-speed coronary computed tomography in symptomatic patients. J Am Coll Cardiol 50:786–794

    Article  PubMed  Google Scholar 

  88. Stolzmann P, Leschka S, Scheffel H et al (2008) Dual-source CT in step-and-shoot mode: noninvasive coronary angiography with low radiation dose. Radiology 249:71–80

    Article  PubMed  Google Scholar 

  89. Brodoefel H, Burgstahler C, Tsiflikas I et al (2008) Dual-source CT: effect of heart rate, heart rate variability, and calcification on image quality and diagnostic accuracy. Radiology 247:346–355

    Article  PubMed  Google Scholar 

  90. Scheffel H, Alkadhi H, Leschka S et al (2008) Low-dose CT coronary angiography in the step-and-shoot mode: diagnostic performance. Heart 94:1132–1137

    Article  PubMed  CAS  Google Scholar 

  91. Stolzmann P, Scheffel H, Leschka S et al (2008) Influence of calcifications on diagnostic accuracy of coronary CT angiography using prospective ECG triggering. AJR Am J Roentgenol 191:1684–1689

    Article  PubMed  Google Scholar 

  92. Rixe J, Rolf A, Conradi G et al (2009) Detection of relevant coronary artery disease using dual-source computed tomography in a high probability patient series: -comparison with invasive angiography. Circ J 73:316–322

    Article  PubMed  Google Scholar 

  93. Schuijf JD, Pundziute G, Jukema JW et al (2006) Diagnostic accuracy of 64-slice multislice computed tomography in the noninvasive evaluation of significant coronary artery disease. Am J Cardiol 98:145–148

    Article  PubMed  Google Scholar 

  94. Miller JM, Rochitte CE, Dewey M et al (2008) Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 359:2324–2336

    Article  PubMed  CAS  Google Scholar 

  95. Bayrak F, Guneysu T, Gemici G et al (2008) Diagnostic performance of 64-slice computed tomography coronary angiography to detect significant coronary artery stenosis. Acta Cardiol 63:11–17

    Article  PubMed  Google Scholar 

  96. Budoff MJ, Dowe D, Jollis JG et al (2008) Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol 52:1724–1732

    Article  PubMed  Google Scholar 

  97. Henneman MM, Schuijf JD, Pundziute G et al (2008) Noninvasive evaluation with multislice computed tomography in suspected acute coronary syndrome: plaque morphology on multislice computed tomography versus coronary calcium score. J Am Coll Cardiol 52:216–222

    Article  PubMed  Google Scholar 

  98. Herzog BA, Husmann L, Burkhard N et al (2008) Accuracy of low-dose computed tomography coronary angiography using prospective electrocardiogram-triggering: first clinical experience. Eur Heart J 29:3037–3042

    Article  PubMed  Google Scholar 

  99. Marano R, De Cobelli F, Floriani I et al (2008) Italian multicenter, prospective study to evaluate the negative predictive value of 16- and 64-slice MDCT imaging in patients scheduled for coronary angiography (NIMISCAD-Non Invasive Multicenter Italian Study for Coronary Artery Disease). Eur Radiol 19:1114–1123

    Article  PubMed  Google Scholar 

  100. Maruyama T, Takada M, Hasuike T, Yoshikawa A, Namimatsu E, Yoshizumi T (2008) Radiation dose reduction and coronary assessability of prospective electrocardiogram-gated computed tomography coronary angiography. Comparison with retrospective electrocardiogram-gated helical scan. J Am Coll Cardiol 52:1450–1455

    Article  PubMed  Google Scholar 

  101. Pundziute G, Schuijf JD, Jukema JW et al (2008) Gender influence on the diagnostic accuracy of 64-slice multislice computed tomography coronary angiography for detection of obstructive coronary artery disease. Heart 94:48–52

    Article  PubMed  CAS  Google Scholar 

  102. Mir-Akbari H, Ripsweden J, Jensen J et al (2009) Limitations of 64-detector-row computed tomography coronary angiography: calcium and motion but not short experience. Acta Radiol 50:174–180

    Article  PubMed  CAS  Google Scholar 

  103. Martuscelli E, Romagnoli A, D’Eliseo A et al (2004) Accuracy of thin-slice computed tomography in the detection of coronary stenoses. Eur Heart J 25:1043–1048

    Article  PubMed  Google Scholar 

  104. Pontone G, Andreini D, Quaglia C, Ballerini G, Nobili E, Pepi M (2007) Accuracy of multidetector spiral computed tomography in detecting significant coronary stenosis in patient populations with differing pre-test probabilities of disease. Clin Radiol 62:978–985

    Article  PubMed  CAS  Google Scholar 

  105. Gaudio C, Mirabelli F, Pelliccia F et al (2008) Early detection of coronary artery disease by 64-slice multidetector computed tomography in asymptomatic hypertensive high-risk patients. Int J Cardiol 135:280–286

    Article  PubMed  Google Scholar 

  106. Johnson TR, Nikolaou K, Busch S et al (2007) Diagnostic accuracy of dual-source computed tomography in the diagnosis of coronary artery disease. Invest Radiol 42:684–691

    Article  PubMed  Google Scholar 

  107. Dewey M, Zimmermann E, Deissenrieder F et al (2009) Noninvasive coronary angiography by 320-row CT with lower radiation exposure and maintained diagnostic accuracy: comparison of results with cardiac catheterization in a head-to-head pilot investigation. Circulation 120:867–875

    Article  PubMed  Google Scholar 

  108. Iglehart JK (2009) Health insurers and medical-imaging policy–a work in progress. N Engl J Med 360:1030–1037

    Article  PubMed  CAS  Google Scholar 

  109. Dewey M, Hamm B (2007) Cost effectiveness of coronary angiography and calcium scoring using CT and stress MRI for diagnosis of coronary artery disease. Eur Radiol 17:1301–1309

    Article  PubMed  Google Scholar 

  110. Genders TS, Meijboom WB, Meijs MF et al (2009) CT coronary angiography in patients suspected of having coronary artery disease: decision making from various perspectives in the face of uncertainty. Radiology 253:734–744

    Article  PubMed  Google Scholar 

  111. Taylor AJ, Cerqueira M, Hodgson JM et al (2010) ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography: a report of the American College of Cardiology Foundation appropriate use criteria task force, the Society of cardiovascular computed tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. Circulation 122:e525–e555

    Article  PubMed  Google Scholar 

  112. Brenner DJ, Hall EJ (2007) Computed tomography–an increasing source of radiation exposure. N Engl J Med 357:2277–2284

    Article  PubMed  CAS  Google Scholar 

  113. Geleijns J, Calzado A, Dewey M, et al (2008) Dose assessment for a multicenter study on diagnostic performance of cardiac 64-slice CT. In: Eur Radiol Suppl 18: A 208

  114. Dewey M, Vavere AL, Arbab-Zadeh A et al (2010) Patient characteristics as predictors of image quality and diagnostic accuracy of MDCT compared with conventional coronary angiography for detecting coronary artery stenoses: CORE-64 Multicenter International Trial. AJR Am J Roentgenol 194:93–102

    Article  PubMed  Google Scholar 

  115. Leschka S, Stinn B, Schmid F et al (2009) Dual source CT coronary angiography in severely obese patients: trading off temporal resolution and image noise. Invest Radiol 44:720–727

    Article  PubMed  Google Scholar 

  116. Flohr TG, McCollough CH, Bruder H et al (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16:256–268

    Article  PubMed  Google Scholar 

  117. Alkadhi H, Scheffel H, Desbiolles L et al (2008) Dual-source computed tomography coronary angiography: influence of obesity, calcium load, and heart rate on diagnostic accuracy. Eur Heart J 29:766–776

    Article  PubMed  Google Scholar 

  118. van der Zaag-Loonen HJ, Dikkers R, de Bock GH, Oudkerk M (2006) The clinical value of a negative multi-detector computed tomographic angiography in patients suspected of coronary artery disease: a meta-analysis. Eur Radiol 16:2748–2756

    Article  PubMed  Google Scholar 

  119. Maurer MH, Hamm B, Dewey M (2009) Survey regarding the clinical practice of cardiac CT in Germany: indications, scanning technique and reporting. Rofo 181:1135–1143

    PubMed  CAS  Google Scholar 

  120. Hillman BJ, Goldsmith JC (2010) The uncritical use of high-tech medical imaging. N Engl J Med 363:4–6

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Potential conflicts of interest: Dr. Schlattmann and Dr. Dewey have received research funding for meta-analyses through a joint program from the German Science Foundation (DFG) and the German Federal Ministry of Education and Research (BMBF).

Dr. Schlattmann is also supported by another grant of the DFG (Schl 3–1) and has received lecture fees from Bayer-Schering.

Dr. Dewey has received grant support from the German Heart Foundation/German Foundation of Heart Research, GE Healthcare Biosciences, Bracco, Toshiba Medical Systems, and Guerbet and lecture fees from Toshiba Medical Systems, Guerbet, Cardiac MR Academy Berlin, and Bayer-Schering.

Dr. Dewey is consultant to Guerbet and one of the principal investigators of multicenter studies on MSCT coronary angiography sponsored by Toshiba Medical Systems. He is also the author of “Cardiac CT” (2011) and “Coronary CT Angiography” (2008) published by Springer and is offering hands-on courses on cardiac CT at Charité (www.ct-kurs.de).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Dewey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlattmann, P., Schuetz, G.M. & Dewey, M. Influence of coronary artery disease prevalence on predictive values of coronary CT angiography: a meta-regression analysis. Eur Radiol 21, 1904–1913 (2011). https://doi.org/10.1007/s00330-011-2142-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-011-2142-2

Keywords

Navigation