Skip to main content
Log in

A large-sample QTL study in mice: I. Growth

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

By use of long-term selection lines for high and low growth, a large-sample (n = ~1,000 F2) experiment was conducted in mice to further understand the genetic architecture of complex polygenic traits. In combination with previous work, we conclude that QTL analysis has reinforced classic polygenic paradigms put in place prior to molecular analysis. Composite interval mapping revealed large numbers of QTL for growth traits with an exponential distribution of magnitudes of effects and validated theoretical expectations regarding gene action. Of particular significance, large effects were detected on Chromosome (Chr) 2. Regions on Chrs 1, 3, 6, 10, 11, and 17 also harbor loci with significant contributions to phenotypic variation for growth. Despite the large sample size, average confidence intervals of ~20 cM exhibit the poor resolution for initial estimates of QTL location. Analysis with genome-wide and chromosomal polygenic models revealed that, under certain assumptions, large fractions of the genome may contribute little to phenotypic variation for growth. Only a few epistatic interactions among detected QTL, little statistical support for gender-specific QTL, and significant age effects on genetic architecture were other primary observations from this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. II Agulnik SI Agulnik BD Saatkamp LM Silver (1998) ArticleTitleSex-specific modifiers of tail development in mice heterozygous for the brachyury (T) mutation. Mamm Genome 9 107–110 Occurrence Handle10.1007/s003359900698 Occurrence Handle1:CAS:528:DyaK1cXhtFKkt70%3D Occurrence Handle9457669

    Article  CAS  PubMed  Google Scholar 

  2. DB Allison JR Fernandez M Heo S Zhu C Etzel et al. (2002) ArticleTitleBias in estimates of quantitative-trait-locus effect in genome scans: demonstration of the phenomenon and a method-of-moments procedure for reducing bias. Am J Hum Genet 70 575–585 Occurrence Handle10.1086/339273 Occurrence Handle1:CAS:528:DC%2BD38XislChsb4%3D Occurrence Handle11836648

    Article  CAS  PubMed  Google Scholar 

  3. L Andersson (1998) Identification and cloning of trait genes. AJ Clark (Eds) Animal Breeding Technology for the 21st Century, Harwood Academic Publishers Amsterdam, The Netherlands 103–117

    Google Scholar 

  4. RV Anunciado T Ohno M Mori A Ishikawa S Tanaka et al. (2000) ArticleTitleDistribution of body weight, blood insulin and lipid levels in the SMXA recombinant inbred strains and the QTL analysis. Exp Anim (Tokyo) 49 217–224 Occurrence Handle10.1538/expanim.49.217 Occurrence Handle1:CAS:528:DC%2BD3cXmvVSjsrc%3D

    Article  CAS  Google Scholar 

  5. RV Anunciado M Nishimura M Mori A Ishikawa S Tanaka et al. (2001) ArticleTitleQuantitative trait loci for body weight in the intercross between SM/J and A/3 mice. Exp Anim (Tokyo) 50 319–324 Occurrence Handle10.1538/expanim.50.319 Occurrence Handle1:STN:280:DC%2BD3MvntV2nsw%3D%3D

    Article  CAS  Google Scholar 

  6. WR Atchley J Zhu (1997) ArticleTitleDevelopmental quantitative genetics, conditional epigenetic variability and growth in mice. Genetics 147 765–776

    Google Scholar 

  7. CJ Basten BS Weir Z-B Zeng (2001) QTL Cartographer, version 1.15 North Carolina State University Raleigh, NC

    Google Scholar 

  8. WD Beavis (1998) Power, precision, and accuracy. AH Beavis (Eds) Molecular Dissection of Complex Traits CRC Press Boca Raton, Fla 145–162

    Google Scholar 

  9. B Bost C Dillmann D de Vienne (1999) ArticleTitleFluxes and metabolic pools as model traits for quantitative genetics. I. The L-shaped distribution of gene effects. Genetics 153 2001–2012 Occurrence Handle1:CAS:528:DC%2BD3MXmt12qu7o%3D Occurrence Handle11495983

    CAS  PubMed  Google Scholar 

  10. D Botstein RL White M Skolnick RW Davis (1980) ArticleTitleConstruction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32 314–324 Occurrence Handle1:CAS:528:DyaL3cXkvFamtbc%3D Occurrence Handle6247908

    CAS  PubMed  Google Scholar 

  11. GA Brockinann MR Bevova (2002) ArticleTitleUsing mouse models to dissect the genetics of obesity. Trends Genet 18 367–376 Occurrence Handle10.1016/S0168-9525(02)02703-8 Occurrence Handle1:CAS:528:DC%2BD38XlsVOlsrY%3D Occurrence Handle12127777

    Article  CAS  PubMed  Google Scholar 

  12. GA Brockmann U Renne K Kopplow P Das (1998a) ArticleTitleGenetic markers for the detection of quantitative trait loci with special consideration of body weight and fat. Acta Theriol . IssueIDSuppl 5 53–62

    Google Scholar 

  13. GA Brockmann CS Haley U Renne SA Knott M Schwerin (1998b) ArticleTitleQuantitative trait loci affecting body weight and fatness from a mouse line selected for extreme high growth. Genetics 150 369–381 Occurrence Handle1:CAS:528:DyaK1cXmtFKgsLc%3D

    CAS  Google Scholar 

  14. GA Brockmann J Kratzsch CS Haley U Renne M Schwerin et al. (2000) ArticleTitleSingle QTL effects, epistasis, and pleiotropy account for two-thirds of the phenotypic F2 variance of growth and obesity in DU6i x DBA/2 mice. Genome Res 10 1941–1957 Occurrence Handle11116089

    PubMed  Google Scholar 

  15. TC Carter DS Falconer (1951) ArticleTitleStocks for detecting linkage in the mouse and the theory of their design. J Genet 50 307–323

    Google Scholar 

  16. JM Cheverud (2000) Detecting epistasis among quantitative trait loci. JB Wolf ED III Brodie MJ Wade (Eds) Epistasis and the Evolutionary Process Oxford University Press Oxford, UK 58–81

    Google Scholar 

  17. JM Cheverud EJ Routman FA Duarte B van Swinderen K Cothran et al. (1996) ArticleTitleQuantitative trait loci for murine growth. Genetics 142 1305–1319 Occurrence Handle1:CAS:528:DyaK28XivVGjur8%3D Occurrence Handle8846907

    CAS  PubMed  Google Scholar 

  18. JM Cheverud TT Vaughn LS Pletscher AC Peripato ES Adams et al. (2001) ArticleTitleGenetic architecture of adiposity in the cross of LG/J and SM/J inbred mice. Mamm Genome 12 3–12 Occurrence Handle10.1007/s003350010218 Occurrence Handle1:CAS:528:DC%2BD3MXptlGqsw%3D%3D Occurrence Handle11178736

    Article  CAS  PubMed  Google Scholar 

  19. GA Churchill RW Doerge (1994) ArticleTitleEmpirical threshold values for quantitative trait mapping. Genetics 138 963–971 Occurrence Handle1:STN:280:ByqC2MvntFw%3D Occurrence Handle7851788

    CAS  PubMed  Google Scholar 

  20. AG Clark (2000) ArticleTitleLimits to prediction of phenotypes from knowledge of genotypes. Evol Biol 32 205–224 Occurrence Handle10.1054/tice.2000.0095

    Article  Google Scholar 

  21. AC Collins IC Martin BW Kirkpatrick (1993) ArticleTitleGrowth quantitative trait loci (QTL) on mouse chromosome 10 in a Quackenbush-Swiss × C57BL/6J backcross. Mamm Genome 4 454–458

    Google Scholar 

  22. PM Corva JF Medrano (2001) ArticleTitleQuantitative trait loci (QTLs) mapping for growth traits in the mouse: a review. Genet Sel Evol 33 105–132 Occurrence Handle10.1051/gse:2001112 Occurrence Handle1:CAS:528:DC%2BD3MXksFalsr8%3D Occurrence Handle11333830

    Article  CAS  PubMed  Google Scholar 

  23. PM Corva S Horvat JF Medrano (2001) ArticleTitleQuantitative trait loci affecting growth in high growth (hg) mice. Mamm Genome 12 284–290 Occurrence Handle1:CAS:528:DC%2BD3MXis12js7s%3D Occurrence Handle11309659

    CAS  PubMed  Google Scholar 

  24. A Darvasi M Soller (1994) ArticleTitleOptimum spacing of genetic markers for determining linkage between marker loci and quantitative trait loci. Theor Appl Genet 89 351–357

    Google Scholar 

  25. GE Dickerson (1973) Inbreeding and heterosis in animals. Jay L Lush (Eds) Proc Animal Breeding and Genetics Symposium American Society of Animal Science Champaign, Illinois 54–77

    Google Scholar 

  26. DK Drudik D Pomp Z-B Zeng EJ Eisen (1995) ArticleTitleIdentification of major genes controlling body weight and fat percentage on mouse chromosome 2. J Anim Sci 73 IssueIDSuppl 1 110

    Google Scholar 

  27. EJ Eisen H Bakker J Nagai (1977) ArticleTitleBody composition and energetic efficiency in two lines of mice selected for rapid growth rate and their F1 crosses. Theor Appl Genet 49 21–34

    Google Scholar 

  28. DS Falconer TF Mackay (1996) Introduction to Quantitative Genetics Longman Group Ltd. Harlow, UK

    Google Scholar 

  29. A Frary TC Nesbitt A Frary S Grandillo E Knaap et al. (2000) ArticleTitle fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289 85–88 Occurrence Handle10.1126/science.289.5476.85 Occurrence Handle1:CAS:528:DC%2BD3cXlt1enu7o%3D Occurrence Handle10884229

    Article  CAS  PubMed  Google Scholar 

  30. M Georges (1998) Mapping genes underlying production traits in livestock. AJ Georges (Eds) Animal Breeding Technology for the 21st Century, Harwood Academic Publishers Amsterdam, The Netherlands 77–101

    Google Scholar 

  31. CJ Goodnight (2000) ArticleTitleQuantitative trait loci and gene interaction: the quantitative genetics of meta-populations. Heredity 84 587–598 Occurrence Handle10.1046/j.1365-2540.2000.00698.x Occurrence Handle10849084

    Article  PubMed  Google Scholar 

  32. HH Goring JD Terwilliger J Blangero (2001) ArticleTitleLarge upward bias in estimation of locus-specific effects from genome-wide scans. Am J Hum Genet 69 1357–1369 Occurrence Handle10.1086/324471 Occurrence Handle11593451

    Article  PubMed  Google Scholar 

  33. MC Green (1989) Catalog of mutant genes and polymorphic loci. MF Green AG Lyon (Eds) Genetic Variants and Strains of the Laboratory Mouse, Oxford University Press Oxford, UK 12–403

    Google Scholar 

  34. CA Hackett (1997) ArticleTitleModel diagnostics for fitting QTL models to trait and marker data by interval mapping. Heredity 79 319–328 Occurrence Handle10.1038/sj.hdy.6882150

    Article  Google Scholar 

  35. JP Hanrahan EJ Eisen JE Legates (1973) ArticleTitleEffects of population size and selection intensity on short-term response to selection for post-weaning gain in mice. Genetics 73 513–530 Occurrence Handle1:STN:280:CSyC28rmt1U%3D Occurrence Handle4700062

    CAS  PubMed  Google Scholar 

  36. B Hayes ME Goddard (2001) ArticleTitleThe distribution of the effects of genes affecting quantitative traits in livestock. Genet Sel Evol 33 209–229 Occurrence Handle10.1051/gse:2001117 Occurrence Handle1:CAS:528:DC%2BD3MXltFWksL4%3D Occurrence Handle11403745

    Article  CAS  PubMed  Google Scholar 

  37. I Hirayama Z Yi S Izumi I Arai W Suzuki et al. (1999) ArticleTitleGenetic analysis of obese diabetes in the TSOD mouse. Diabetes 48 1183–1191 Occurrence Handle1:CAS:528:DyaK1MXjtFSgtL4%3D Occurrence Handle10331427

    CAS  PubMed  Google Scholar 

  38. G Horstgen-Schwark EJ Eisen AM Saxton TR Bandy (1984) ArticleTitleDiallel cross among lines of mice selected for litter size and body weight:growth traits. Z Tierz Züchtungsbiol 101 96–111

    Google Scholar 

  39. A Ishikawa Y Matsuda T Namikawa (2000) ArticleTitleDetection of quantitative trait loci for body weight at 10 weeks from Philippine wild mice. Mamm Genome 11 824–830

    Google Scholar 

  40. C Jiang Z-B Zeng (1995) ArticleTitleMultiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140 1111–1127 Occurrence Handle1:CAS:528:DyaK28Xht1Gjur4%3D Occurrence Handle7672582

    CAS  PubMed  Google Scholar 

  41. JL Jinks (1977) ArticleTitleDiscussion of Dr. Eaves’ paper. J R Statist Soc Ser A 140 352–353

    Google Scholar 

  42. C-H Kao Z-B Zeng RD Teasdale (1999) ArticleTitleMultiple interval mapping for quantitative trait loci. Genetics 152 1203–1216 Occurrence Handle1:CAS:528:DyaK1MXltVWnsbg%3D Occurrence Handle10388834

    CAS  PubMed  Google Scholar 

  43. PD Keightley SA Knott (1999) ArticleTitleTesting the correspondence between map positions of quantitative trait loci. Genet Res 74 323–328 Occurrence Handle10.1017/S0016672399004176 Occurrence Handle1:CAS:528:DC%2BD3cXhs1Grur4%3D

    Article  CAS  Google Scholar 

  44. PD Keightley T Hardge L May G Bulfleld (1999) ArticleTitleA genetic map of quantitative trait loci for body weight in the mouse. Genetics 142 227–235

    Google Scholar 

  45. BW Kirkpatrick A Mengelt N Schulman IC Martin (1998) ArticleTitleIdentification of quantitative trait loci for prolificacy and growth in mice. Mamm Genome 9 97–102 Occurrence Handle1:CAS:528:DyaK1cXhtFKktrs%3D Occurrence Handle9457667

    CAS  PubMed  Google Scholar 

  46. R Kluge K Giesen G Bahrenberg L Plum JR Ortlepp et al. (2000) ArticleTitleQuantitative trait loci for obesity and insulin resistance (Nob1, Nob2) and their interaction with the leptin receptor allele (Lepr A720T/T1044I) in New Zealand obese mice. Diabetologia 43 1565–1572 Occurrence Handle1:CAS:528:DC%2BD3cXotFCrt7w%3D Occurrence Handle11151768

    CAS  PubMed  Google Scholar 

  47. SA Knott L Marklund CS Haley K Andersson W Davies et al. (1998) ArticleTitleMultiple marker mapping of quantitative trait loci in a cross between outbred wild boar and Large White pigs. Genetics 149 1069–1080

    Google Scholar 

  48. ES Lander D Botstein (1989) ArticleTitleMapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121 185–199 Occurrence Handle1:STN:280:BiaC3sjpsVw%3D Occurrence Handle2563713

    CAS  PubMed  Google Scholar 

  49. JE Legates (1969) Direct and correlated responses to selection in mice. R Legates (Eds) Genetics Lectures, vol. 1, Oregon State University Press Corvallis, Oregon 149–165

    Google Scholar 

  50. EH Leiter PC Reifsnyder K Flurkey H-J Partke E Junger et al. (1998) ArticleTitleDeleterious synergism by both parental genomes contributes to diabetogenic thresholds. Diabetes 47 1287–1295 Occurrence Handle1:CAS:528:DyaK1cXltFyrt7g%3D Occurrence Handle9703330

    CAS  PubMed  Google Scholar 

  51. AV Lembertas L Perusse YC Chagnon JS Fisler CH Warden et al. (1997) ArticleTitleIdentification of an obesity quantitative trait locus on mouse chromosome 2 and evidence of linkage to body fat and insulin on the human homologous region 20q. J Clin Invest 100 1240–1247 Occurrence Handle1:CAS:528:DyaK2sXlvFOgsbY%3D Occurrence Handle9276742

    CAS  PubMed  Google Scholar 

  52. SE Lincoln ES Lander (1992) ArticleTitleSystematic detection of errors in genetic linkage data. Genomics 14 604–610 Occurrence Handle1:CAS:528:DyaK3sXhvVCntbs%3D Occurrence Handle1427888

    CAS  PubMed  Google Scholar 

  53. SE Lincoln M Daly ES Lander (1992) Constructing genetic maps with MAPMAKER/EXP 3.0, 3rd ed. Whitehead Institute Technical Report Cambridge, Mass

    Google Scholar 

  54. TF Mackay (2001) ArticleTitleQuantitative trait loci in Drosophila. Nat Rev Genet 2 11–20 Occurrence Handle10.1038/35047544 Occurrence Handle1:CAS:528:DC%2BD3MXisVGjs7w%3D Occurrence Handle11253063

    Article  CAS  PubMed  Google Scholar 

  55. RC Malik (1984) ArticleTitleGenetic and physiological aspects of growth, body composition and feed efficiency in mice: a review. J Anim Sci 58 577–590 Occurrence Handle1:STN:280:BiuC1crjsF0%3D Occurrence Handle6370947

    CAS  PubMed  Google Scholar 

  56. GL Masinde X Li W Gu H Davidson MH Ulland et al. (2002) ArticleTitleQuantitative trait loci (QTL) for lean body mass and body length in MRL/MPJ and SJL/J F2 mice. Funct Integr Genomics 2 98–104 Occurrence Handle10.1007/s10142-002-0053-7 Occurrence Handle1:CAS:528:DC%2BD38XmvFOnsbk%3D Occurrence Handle12185457

    Article  CAS  PubMed  Google Scholar 

  57. M Mehrabian P-Z Wen J Fisler RC Davis AJ Lusis (1998) ArticleTitleGenetic loci controlling body fat, lipoprotein metabolism, and insulin levels in a multifactorial mouse model. J Clin Invest 101 2485–2496 Occurrence Handle1:CAS:528:DyaK1cXjvVajsbs%3D Occurrence Handle9616220

    CAS  PubMed  Google Scholar 

  58. AE Melchinger HF Utz CC Schon (1998) ArticleTitleQuantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics 149 383–403 Occurrence Handle1:CAS:528:DyaK1cXks1ektb8%3D Occurrence Handle9584111

    CAS  PubMed  Google Scholar 

  59. DE Moody D Pomp MK Nielsen LD Van Vleck (1999) ArticleTitleIdentification of quantitative trait loci influencing traits related to energy balance in selection and inbred lines of mice. Genetics 152 699–711

    Google Scholar 

  60. KJ Moore DL Nagle (2000) ArticleTitleComplex trait analysis in the mouse: the strengths, the limitations and the promise yet to come. Annu Rev Genet 34 653–686 Occurrence Handle1:CAS:528:DC%2BD3MXlvFOjuw%3D%3D Occurrence Handle11092842

    CAS  PubMed  Google Scholar 

  61. KH Morris A Ishikawa PD Keightley (1999) ArticleTitleQuantitative trait loci for growth traits in C57BL/6J × DBA/2J mice. Mamm Genome 10 225–228 Occurrence Handle1:CAS:528:DyaK1MXhs1OlsLw%3D Occurrence Handle10051315

    CAS  PubMed  Google Scholar 

  62. K Mullis F Faloona S Scharf R Saiki G Hom et al. (1992) ArticleTitleSpecific enzymatic amplification of DNA in vitro: the Polymerase Chain Reaction. Biotechnology 24 17–27 Occurrence Handle1:STN:280:ByyD2cvhsVE%3D Occurrence Handle1422010

    CAS  PubMed  Google Scholar 

  63. MR Nelson SL Kardia RE Ferrell CF Sing (2001) ArticleTitleA combinatorial partitioning method to identify multilocus genotypic partitions that predict quantitative trait variation. Genome Res 11 458–470 Occurrence Handle10.1101/gr.172901 Occurrence Handle1:CAS:528:DC%2BD3MXhvVOntrg%3D Occurrence Handle11230170

    Article  CAS  PubMed  Google Scholar 

  64. L Ott (l984) An Introduction to Statistical Methods and Data Analysis, 2nd ed. Duxbury Press Boston, Mass.

    Google Scholar 

  65. L Plum R Kluge K Giesen J Altmuller JR Ortlepp et al. (2000) ArticleTitleCharacterization of a susceptibility locus on chromosome 4 and its relation with obesity. Diabetes 49 1590–1596 Occurrence Handle1:CAS:528:DC%2BD3cXmsVOrtrw%3D Occurrence Handle10969845

    CAS  PubMed  Google Scholar 

  66. D Pomp (1997) ArticleTitleGenetic dissection of obesity in polygenic animal models. Behav Genet 27 285–306 Occurrence Handle10.1023/A:1025631813018 Occurrence Handle1:STN:280:DyaK1c7otVSrtQ%3D%3D Occurrence Handle9519558

    Article  CAS  PubMed  Google Scholar 

  67. D Pomp MA Cushman SC Foster DK Drudik M Fortman et al. (1994) ArticleTitleIdentification of quantitative trait loci for body weight and body fat in mice. Proc 5th World Congr Genet Appl Livest Prod 21 209–212

    Google Scholar 

  68. D Pomp N Jerez-Timaure MF Allan EJ Eisen (2002) ArticleTitleIntegrated genomic, proteomic and metabolomic dissection of polygenic selection response for murine growth and fatness. Proc 7th World Congr Genet Appl Livest Prod 32 447–450

    Google Scholar 

  69. PC Reifsnyder G Churchill EH Leiter (2000) ArticleTitleMaternal environment and genotype interact to establish diabesity in mice. Genome Res 10 1568–1578

    Google Scholar 

  70. A Robertson (1966) ArticleTitleBiochemical polymorphisms in animal improvement. Proc X Europ Congr Anim Blood Groups Biochem Polymorph . 35–42

    Google Scholar 

  71. A Robertson (1967) The nature of quantitative genetic variation. A Brink (Eds) Heritage from Mendel, University of Wisconsin Madison, Wis. 265–280

    Google Scholar 

  72. JL Rocha LD Van Vleck EJ Eisen D Pomp (2004) ArticleTitleA large sample QTL study in mice: II. Organ and body composition traits. Mamm Genome . .

    Google Scholar 

  73. JL Rocha F Siewerdt LD Van Vleck EJ Eisen D Pomp (2004) ArticleTitleA largesample QTL study in mice: III. Reproduction. Mamm Genome . .

    Google Scholar 

  74. EJ Routman JM Cheverud (2004) ArticleTitleGene effects on a quantitative trait: twolocus epistatic effects measured at microsatellite markers and at estimated QTL. Evolution 51 1654–1662

    Google Scholar 

  75. InstitutionalAuthorNameSAS Institute Inc. (1985) SAS User’s Guide: Basics SAS Gary, NC

    Google Scholar 

  76. InstitutionalAuthorNameSAS Institute Inc.SAS Institute Inc. (1996) SAS System for Mixed Models SAS Gary, NC

    Google Scholar 

  77. NJ Schork (2001) ArticleTitleGenome partitioning and whole-genome analysis. Adv Genet 42 299–322 Occurrence Handle1:CAS:528:DC%2BD3cXot1Smtrg%3D Occurrence Handle11037329

    CAS  PubMed  Google Scholar 

  78. BA Taylor LM Tarantino SJ Phillips (1999) ArticleTitleGender-influenced obesity QTLs identified in a cross involving the KK type II diabetes-prone mouse strain. Mamm Genome 10 963–968

    Google Scholar 

  79. JD Terwilliger HH Goring (2000) ArticleTitleGene mapping in the 20th and 21st centuries: statistical methods, data analysis, and experimental design. Hum Biol 72 63–132 Occurrence Handle1:STN:280:DC%2BD3c7os1eqsA%3D%3D Occurrence Handle10721614

    CAS  PubMed  Google Scholar 

  80. JW Van Ooijen (1992) ArticleTitleAccuracy of mapping quantitative trait loci in autogamous species. Theor Appl Genet 84 803–811 Occurrence Handle1:CAS:528:DyaK3sXnsVCgtg%3D%3D

    CAS  Google Scholar 

  81. TT Vaughn LS Pletscher A Peripato KK Ellison E Adams et al. (1999) ArticleTitleMapping quantitative trait loci for murine growth: a closer look at genetic architecture. Genet Res Camb 74 313–322 Occurrence Handle10.1017/S0016672399004103 Occurrence Handle1:CAS:528:DC%2BD3cXhs1Grtbc%3D

    Article  CAS  Google Scholar 

  82. PM Visscher CS Haley (1996) ArticleTitleDetection of putative quantitative trait loci in line crosses under infinitesimal genetic models. Theor Appl Genet 93 691–702

    Google Scholar 

  83. MJ Wade (1992) ArticleTitleSewall Wright: gene interaction and the shifting balance theory. Oxf Surv Evol Biol 8 33–62

    Google Scholar 

  84. KM Weiss (1996) ArticleTitleIs there a paradigm shift in genetics? Lessons from the study of human diseases. Mol Phylogenet Evol 5 259–265 Occurrence Handle10.1006/mpev.1996.0019 Occurrence Handle1:STN:280:BymB28vot1A%3D Occurrence Handle8673294

    Article  CAS  PubMed  Google Scholar 

  85. DB West JG Lefevre B York GE Truett (1994) ArticleTitleDietary obesity linked to genetic loci on chromosomes 9 and 15 in a polygenic mouse model. J Clin Invest 94 1410–1416 Occurrence Handle1:CAS:528:DyaK2cXmvFCiu70%3D Occurrence Handle7929816

    CAS  PubMed  Google Scholar 

  86. JM White EJ Eisen JE Legates (1970) ArticleTitleSex-heterosis interaction, heterosis and reciprocal effects among mice selected for body weight. J Anim Sci 31 289–295

    Google Scholar 

  87. Y Xu P Jin AL Mellor CM Warner (1994) ArticleTitleIdentification of the Fed gene at the molecular level: the Q9 MHC class I transgene converts the Ped slow to the Ped fast phenotype. Biol Reprod 51 695–699 Occurrence Handle1:CAS:528:DyaK2cXmtVWmuro%3D Occurrence Handle7819451

    CAS  PubMed  Google Scholar 

  88. M Yano (2001) ArticleTitleGenetic and molecular dissection of naturally occurring variation. Curr Opin Plant Biol 4 130–135 Occurrence Handle1:CAS:528:DC%2BD3MXislCktLc%3D Occurrence Handle11228435

    CAS  PubMed  Google Scholar 

  89. B York K Lei DB West (1996) ArticleTitleSensitivity to dietary obesity linked to a locus on chromosome 15 in a CAST/Ei × C57BL/6J F2 intercross. Mamm Genome 7 677–681

    Google Scholar 

  90. ND Young (1999) ArticleTitleA cautiously optimistic vision for marker-assisted breeding. Molec Breed 5 505–510 Occurrence Handle10.1023/A:1009684409326

    Article  Google Scholar 

  91. Z-B Zeng (1993) ArticleTitleTheoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Na‘tl Acad Sci USA 90 10972–10976 Occurrence Handle1:CAS:528:DyaK2cXkslWlsQ%3D%3D

    CAS  Google Scholar 

  92. Z-B Zeng (1994) ArticleTitlePrecision mapping of quantitative trait loci. Genetics 136 1457–1468 Occurrence Handle1:CAS:528:DyaK2MXhtFantw%3D%3D Occurrence Handle8013918

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Mary Ann Cushman, Stephenie Foster, and Grady Beck for collection of genotypic data. We appreciate the assistance of James Specht and Steven Kachman in statistical analyses and use of QTL detection computer packages. We have also benefited greatly from useful discussions with Jerry Taylor, Mark Thallman, and Gary Rohrer, and from constructive reviews of a previous version of this manuscript by Bill Hill and Merlyn Nielsen. J.L. Rocha acknowledges the support of the Portuguese Foundation for Science and Technology. This research is a contribution of the University of Nebraska Agricultural Research Division (Lincoln, nab.; Journal Series No. 14110) and the North Carolina Agricultural Research Service, and was supported in part by funds provided through the Hatch Act. This research was also partially based upon work supported by the National Science Foundation under Grant No. 0091900 (Nebraska EPSCOR infrastructure improvement grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Pomp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rocha, J.L., Eisen, E.J., Dale Van Vleck, L. et al. A large-sample QTL study in mice: I. Growth . Mamm Genome 15, 83–99 (2004). https://doi.org/10.1007/s00335-003-2312-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-003-2312-x

Keywords

Navigation