Skip to main content
Log in

A high-resolution physical map of equine homologs of HSA19 shows divergent evolution compared with other mammals

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

A high-resolution (1 marker/700 kb) physically ordered radiation hybrid (RH) and comparative map of 122 loci on equine homologs of human Chromosome 19 (HSA19) shows a variant evolution of these segments in equids/Perissodactyls compared with other mammals. The segments include parts of both the long and the short arm of horse Chromosome 7 (ECA7), the proximal part of ECA21, and the entire short arm of ECA10. The map includes 93 new markers, of which 89 (64 gene-specific and 25 microsatellite) were genotyped on a 5000-rad horse × hamster RH panel, and 4 were mapped exclusively by FISH. The orientation and alignment of the map was strengthened by 21 new FISH localizations, of which 15 represent genes. The approximately sevenfold-improved map resolution attained in this study will prove extremely useful for candidate gene discovery in the targeted equine chromosomal regions. The highlight of the comparative map is the fine definition of homology between the four equine chromosomal segments and corresponding HSA19 regions specified by physical coordinates (bp) in the human genome sequence. Of particular interest are the regions on ECA7 and ECA21 that correspond to the short arm of HSA19—a genomic rearrangement discovered to date only in equids/Perissodactyls as evidenced through comparative Zoo-FISH analysis of the evolution ofancestral HSA19 segments in eight mammalian orders involving about 50 species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agarwala R, Applegate DL, Maglott D, Schuler GD, Schäffer AA (2000) A fast and scalable radiation hybrid map construction and integration strategy. Genome Res 10: 350–364

    Article  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, et al. (1997) Gapped BLAST and PSI-BLAST—A new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402

    PubMed  Google Scholar 

  • Applegate D, Bixby R, Chvátal V, Cook W (1998) On the solution of traveling salesman problems. Documenta mathematica, extra volume. Int Congr Math III: 645–656

    Google Scholar 

  • Ben-Dor A, Chor B (1997) On constructing radiation hybrid maps. J Comput Biol 4: 517–533

    PubMed  Google Scholar 

  • Bielec PE, Gallagher DS, Womack JE, Busbee DL (1998) Homologies between human and dolphin chromosomes detected by heterologous chromosome painting. Cytogenet Genome Res 81: 18–25

    Article  Google Scholar 

  • Bosak N, Yamomoto R, Fujisaki S, Faraut T, Kiuchi S, et al. (2005) A dense comparative gene map between human chromosome 19q13.3 → q13.4 and a homologous segment of swine chromosome 6. Cytogenet Genome Res 108: 317–321

    Article  PubMed  Google Scholar 

  • Breen M, Thomas R, Binns MM, Carter NP, Langford CF (1999) Reciprocal chromosome painting reveals detailed regions of conserved synteny between the karyotypes of the domestic dog (Canis familiaris) and human. Genomics 61: 145–155

    Article  PubMed  Google Scholar 

  • Burkin DJ, Yang F, Broad TE, Wienberg J, Hill DF, et al. (1997) Use of the Indian muntjac idiogram to align conserved chromosomal segments in sheep and human genomes by chromosome painting. Genomics 46: 143–147

    Article  PubMed  Google Scholar 

  • Caetano AR, Pomp D, Murray JD, Bowling AT (1999a) Comparative mapping of 18 equine type I genes assigned by somatic cell hybrid analysis. Mamm Genome 10: 271–276

    Article  Google Scholar 

  • Caetano AR, Shiue Y-L, Lyons LA, O’Brien SJ, Laughlin TF, et al. (1999b) A comparative gene map of the horse (Equus caballus). Genome Res 9: 1239–1249

    Article  Google Scholar 

  • Chaudhary R, Raudsepp T, Guan X-Y, Zhang H, Chowdhary BP (1998) Zoo-FISH with microdissected arm specific paints for HSA2, 5, 6, 16, and 19 refines known homology with pig and horse chromosomes. Mamm Genome 9: 44–49

    Article  PubMed  Google Scholar 

  • Chaves R, Frönicke L, Guedes-Pinto H, Wienberg J (2004) Multidirectional chromosome painting between the Hirola antelope (Damaliscus hunteri, Alcelaphini, Bovidae), sheep and human. Chromosome Res 12: 495–503

    Article  PubMed  Google Scholar 

  • Chi J, Fu B, Nie W, Wang J, Graphodatsky AS, et al. (2005) New insights into the karyotypic relationships of Chinese muntjac (Muntiacus reevesi), forest musk deer (Moschus berezovskii) and gayal (Bos frontalis). Cytogenet Genome Res 108: 310–316

    Article  PubMed  Google Scholar 

  • Chowdhary BP, Frönicke L, Gustavsson I, Scherthan H (1996) Comparative analysis of the cattle and human genomes: detection of ZOO-FISH and gene mapping-based chromosomal homologies. Mamm Genome 7: 297–302

    Article  PubMed  Google Scholar 

  • Chowdhary BP, Raudsepp T, Frönicke L, Scherthan H (1998) Emerging patterns of comparative genome organization in some mammalian species as revealed by Zoo-FISH. Genome Res 8: 577–589

    PubMed  Google Scholar 

  • Chowdhary BP, Raudsepp T, Honeycutt D, Owens EK, Piumi F, et al. (2002) Construction of a 5000rad whole-genome radiation hybrid panel in the horse and generation of a comprehensive and comparative map for ECA11. Mamm Genome 13: 89–94

    Article  PubMed  Google Scholar 

  • Chowdhary BP, Raudsepp T, Kata SR, Goh G, Millon LV, et al. (2003) The first-generation whole-genome radiation hybrid map in the horse identifies conserved segments in human and mouse genomes. Genome Res 13: 742–751

    Article  PubMed  Google Scholar 

  • Dehal P, Predki P, Olsen AS, Kobayashi A, Folta P, et al. (2001) Human chromosome 19 and related regions in mouse: conservative and lineage-specific evolution. Science 293: 104–111

    Article  PubMed  Google Scholar 

  • Dixkens C, Klett C, Bruch J, Kollak A, Serov OL, et al. (1998) Zoo-FISH analysis in insectivores: “Evolution extols the virtue of the status quo”. Cytogenet Cell Genet 80: 61–67

    Article  PubMed  Google Scholar 

  • Everts-van der Wind A, Kata SR, Band MR, Rebeiz M, Larkin DM, et al. (2004) A 1463 gene cattle-human comparative map with anchor points defined by human genome sequence coordinates. Genome Res 14: 1424–1437

    Article  PubMed  Google Scholar 

  • Frönicke L, Chowdhary BP, Scherthan H, Gustavsson I (1996) A comparative map of the porcine and human genomes demonstrates ZOO-FISH and gene mapping-based chromosomal homologies. Mamm Genome 7: 285–290

    Article  PubMed  Google Scholar 

  • Frönicke L, Muller-Navia J, Romanakis K, Scherthan H (1997) Chromosomal homeologies betweenhuman, harbor seal (Phoca vitulina) and the putative ancestral carnivore karyotype revealed by Zoo-FISH. Chromosoma 106: 108–113

    Article  PubMed  Google Scholar 

  • Frönicke L, Wienberg J (2001) Comparative chromosome painting defines the high rate of karyotype changes between pigs and bovids. Mamm Genome 12: 442–449

    Article  PubMed  Google Scholar 

  • Frönicke L, Wienberg J, Stone G, Adams L, Stanyon R (2003) Towards the delineation of the ancestral eutherian genome organization: comparative genome maps of human and the African elephant (Loxodonta africana) generated by chromosome painting. Proc R Soc Lond B Biol Sci 270: 1331–1340

    Article  Google Scholar 

  • Gautier M, Hayes H, Bønsdorff T, Eggen A (2003) Development of a comprehensive comparative radiation hybrid map of bovine chromosome 7 (BTA7) versus human chromosomes 1 (HSA1), 5 (HSA5) and 19 (HSA19). Cytogenet Genome Res 102: 25–31

    Article  PubMed  Google Scholar 

  • Godard S, Vaiman D, Oustry A, Nocart M, Bertaud M, et al. (1997) Characterization, genetic and physical mapping analysis of 36 horse plasmid and cosmid-derived microsatellites. Mamm Genome 8: 745–750

    Article  PubMed  Google Scholar 

  • Godard S, Vaiman A, Schibler L, Mariat D, Vaiman D, et al. (2000) Cytogenetic localization of 44 new coding sequences in the horse. Mamm Genome 11: 1093–1097

    Article  PubMed  Google Scholar 

  • Goldammer T, Kata SR, Brunner RM, Dorroch U, Sanftleben H, et al. (2002) A comparative radiation hybrid map of bovine chromosome 18 and homologous chromosomes in human and mice. PR Proc Natl Acad Sci USA 99: 2106–2111

    Article  Google Scholar 

  • Goureau A, Yerle M, Schmitz A, Riquet J, Milan D, et al. (1996) Human and porcine correspondence of chromosome segments using bidirectional chromosome painting. Genomics 36: 252–262

    Article  PubMed  Google Scholar 

  • Graphodatsky AS, Yang F, Serdukova N, Perelman P, Zhdanova NS, et al. (2000) Dog chromosome-specific paints reveal evolutionary inter- and intrachromosomal rearrangements in the American mink and human. Cytogenet Genome Res 90: 275–278

    Article  Google Scholar 

  • Graphodatsky AS, Yang F, O’Brien PCM, Perelman P, Milne BS, et al. (2001) Phylogenetic implications of the 38 putative ancestral chromosome segments for four canid species. Cytogenet Genome Res 92: 243–247

    Article  Google Scholar 

  • Grimwood J, Gordon LA, Olsen A, Terry A, Schmutz J, et al. (2004) The DNA sequence and biology of human chromosome 19. Nature 428: 529–535

    Article  PubMed  Google Scholar 

  • Guérin G, Bailey E, Bernoco D, Anderson I, Antczak DF, et al. (1999) Report of the International Equine Gene Mapping Workshop: male linkage map. Anim Genet 30: 341–354

    Article  PubMed  Google Scholar 

  • Guérin G, Bailey E, Bernoco D, Anderson I, Antczak DF, et al. (2003) The second generation of the International Equine Gene Mapping Workshop half-sibling linkage map. Anim Genet 34: 161–168

    Article  PubMed  Google Scholar 

  • Gustafson-Seabury A, Raudsepp T, Goh G, Kata SR, Wagner ML, et al. (2005) High-resolution RH map of horse chromosome 22 reveals a putative ancestral vertebrate chromosome. Genomics 85: 188–200

    Article  PubMed  Google Scholar 

  • Hameister H, Klett C, Bruch J, Dixkens C, Vogel W, et al. (1997) Zoo-FISH analysis: the American mink (Mustela vison) closely resembles the cat karyotype. Chromosome Res 5: 5–11

    Article  PubMed  Google Scholar 

  • Helou K, Walentinsson A, Levan GR, Ståhl F (2001) Between rat and mouse Zoo-FISH reveals 49 chromosomal segments that have been conserved in evolution. Mamm Genome 12: 765–771

    PubMed  Google Scholar 

  • Hirota K, Tozaki T, Mashima S, Miura N (2001) Cytogenetic assignment and genetic characterization of the horse microsatellites, TKY4-18, TKY20, TKY22-24, TKY30-41 derived from a cosmid library. Anim Genet 32: 160–162

    Article  PubMed  Google Scholar 

  • Hitte C, Lorentzen TD, Guyon R, Kim L, Cadieu E, et al. (2003) Comparison of MultiMap and TSP/CONCORDE for constructing radiation hybrid maps. J Hered 94: 9–13

    Article  PubMed  Google Scholar 

  • Iannuzzi L, Di Meo GP, Perucatti A, Bardaro T (1998) ZOO-FISH and R-banding reveal extensive conservation of human chromosome regions in euchromatic regions of river buffalo chromosomes. Cytogenet Genome Res 82: 210–214

    Article  Google Scholar 

  • Iannuzzi L, Di Meo GP, Perucatti A, Incarnato D (1999) Comparison of the human with the sheep genomes by use of human chromosome-specific painting probes. Mamm Genome 10: 719–723

    Article  PubMed  Google Scholar 

  • Korstanje R, O’Brien PCM, Yang F, Rens W, Bosma AA, et al. (1999) Complete homology maps of the rabbit (Oryctolagus cuniculus) and human by reciprocal chromosome painting. Cytogenet Genome Res 86: 317–322

    Article  Google Scholar 

  • Kumar S, Hedges SB (1998) A molecular timescale for vertebrate evolution. Nature 392: 917–920

    Google Scholar 

  • Lear TL, Brandon R, Piumi F, Terry RR, Guérin G, et al. (2001) Mapping of 31 horse genes in BACs by FISH. Chromosome Res 9: 261–262

    Article  PubMed  Google Scholar 

  • Lee E-J, Raudsepp T, Kata SR, Adelson D, Womack JE, et al. (2003) A 1.4-Mb interval RH map of horse chromosome 17 provides detailed comparison with human and mouse homologues. Genomics 83: 203–215

    Article  Google Scholar 

  • Li T, O’Brien PCM, Biltueva L, Fu B, Wang J, et al. (2004) Evolution of genome organizations of squirrels (Sciuridae) revealed by cross-species chromosome painting. Chromosome Res 12: 317–335

    Article  PubMed  Google Scholar 

  • Lindgren G, Sandberg K, Persson H, Marklund S, Breen M, et al. (1998) A primary male autosomal linkage map of the horse genome. Genome Res 8: 951–966

    PubMed  Google Scholar 

  • Mariat D, Oustry-Vaiman A, Cribiu EP, Raudsepp T, Chowdhary BP, et al. (2001) Isolation, characterization and FISH assignments of horse BAC clones containing type I and II markers. Cytogenet Cell Genet 92: 144–148

    Article  PubMed  Google Scholar 

  • Martins-Wess F, Rohrer G, Voß-Nemitz R, Drögemüller C, Brenig B, et al. (2003) Generation of a 5.5-Mb BAC/PAC contig of pig chromosome 6q1.2 and its integration with existing RH, genetic and comparative maps. Cytogenet Genome Res 102: 116–120

    Article  PubMed  Google Scholar 

  • Menotti-Raymond M, David VA, Chen ZQ, Menotti KA, Sun S, et al. (2003a) Second-generation integrated genetic linkage/radiation hybrid maps of the domestic cat (Felis catus). J Hered 94: 95–106

    Article  Google Scholar 

  • Menotti-Raymond M, David VA, Agarwala R, Schäffer AA, Stephens R, et al. (2003b) Radiation hybrid mapping of 304 novel microsatellites in the domestic cat genome. Cytogenet Genome Res 102: 272–276

    Article  Google Scholar 

  • Milenkovic D, Oustry-Vaiman A, Lear TL, Billault A, Mariat D, et al. (2002) Cytogenetic localization of 136 genes in the horse: comparative mapping with the human genome. Mamm Genome 13: 524–534

    Article  PubMed  Google Scholar 

  • Myka JL, Lear TL, Houck ML, Ryder OA, Bailey E (2003) FISH analysis comparing genome organization in the domestic horse (Equus caballus) to that of the Mongolian wild horse (E. przewalskii). Cytogenet Genome Res 102, 222–225.

    Article  PubMed  Google Scholar 

  • Nash WG, Wienberg J, Ferguson-Smith MA, Menninger JC, O’Brien SJ (1998) Comparative genomics: tracking chromosome evolution in the family Ursidae using reciprocal chromosome painting. Cytogenet Genome Res 83: 182–192

    Article  Google Scholar 

  • Nash WG, Menninger JC, Wienberg J, Padilla-Nash HM, O’Brien SJ (2001) The pattern of phylogenomic evolution of the Canidae. Cytogenet Genome Res 95: 210–224

    Article  Google Scholar 

  • Nilsson S, Helou K, Walentinsson A, Szpirer C, Nerman O, et al. (2001) Rat-mouse and rat-human comparative maps based on gene homology and high-resolution Zoo-FISH. Genomics 74: 287–298

    Article  PubMed  Google Scholar 

  • Pascual I, Dhar AK, Fan Y, Paradis MR, Arruga MV, et al. (2002) Isolation of expressed sequence tags from a Thoroughbred horse (Equus caballus) 5′-RACE cDNA library. Anim Genet 33: 231–232

    Article  PubMed  Google Scholar 

  • Penedo MCT, Millon LV, Bernoco D, Bailey E, Binns E, et al. (2005) International Equine Gene Mapping Workshop Report: A comprehensive linkage map constructed with data from new markers and by merging four mapping resources. Cytogenet Genome Res (in press)

    Google Scholar 

  • Pinton P, Schibler L, Cribiu E, Gellin J, Yerle M (2000) Localization of 113 anchor loci in pigs: improvement of the comparative map for humans, pigs, and goats. Mamm Genome 11: 306–315

    Article  PubMed  Google Scholar 

  • Rattink AP, Faivre M, Jungerius BJ, Groenen MAM, Harlizius B (2001) A high-resolution comparative RH map of porcine chromosome (SSC) 2. Mamm Genome 12: 366–370

    Article  PubMed  Google Scholar 

  • Raudsepp T, Frönicke L, Scherthan H, Gustavsson I, Chowdhary BP (1996) Zoo-FISH delineates conserved chromosomal segments in horse and man. Chromosome Res 4: 218–225

    PubMed  Google Scholar 

  • Raudsepp T, Chowdhary BP (2001) Correspondence of human chromosomes 9, 12, 15, 16, 19 and 20 with donkey chromosomes refines homology between horse and donkey karyotypes. Chromosome Res 9: 623–629

    Article  PubMed  Google Scholar 

  • Raudsepp T, Kata SR, Piumi F, Swinburne J, Womack JE, et al. (2002) Conservation of gene order between horse and human X chromosomes as evidenced through radiation hybrid mapping. Genomics 79: 451–457

    Article  PubMed  Google Scholar 

  • Raudsepp T, Lee E-J, Kata SR, Brinkmeyer C, Mickelson JR, et al. (2004a) Exceptional conservation of horse-human gene order on X chromosome revealed by high-resolution radiation hybrid mapping. Proc Natl Acad Sci U S A 101: 2386–2391

    Article  Google Scholar 

  • Raudsepp T, Santani A, Wallner B, Kata SR, Ren C, et al. (2004b) A detailed physical map of the horse Y chromosome. Proc Natl Acad Sci USA 101: 9321–9326

    Article  Google Scholar 

  • Rettenberger G, Klett C, Zechner U, Kunz J, Vogel W, et al. (1995) Visualization of the conservation of synteny between humans and pigs by heterologous chromosomal painting. Genomics 26: 372–378

    Article  PubMed  Google Scholar 

  • Richard F, Lombard M, Dutrillaux B (2000) Phylogenetic origin of human chromosomes 7, 16, and 19 and their homologs in placental mammals. Genome Res 10: 644–651

    Article  PubMed  Google Scholar 

  • Richard F, Messaoudi C, Bonnet-Garnier A, Lombard M, Dutrillaux B (2003) Highly conserved chromosomes in an Asian squirrel (Menetes berdmorei, Rodentia: Sciuridae) as demonstrated by Zoo-FISH with human probes. Chromosome Res 11: 597–603

    Article  PubMed  Google Scholar 

  • Robinson TJ, Fu B, Ferguson-Smith MA, Yang F (2004) Cross-species chromosome painting in the golden mole and elephant-shrew: support for the mammalian clades Afrotheria and Afroinsectiphillia but not Afroinsectivora. Proc R Soc Lond B Biol Sci 271: 1477–1484

    Article  Google Scholar 

  • Schibler L, Vaiman D, Oustry A, Giraud-Delville C, Cribiu EP (1998) Comparative gene mapping: A fine-scale survey of chromosome rearrangements between ruminants and humans. Genome Res 8: 901–915

    PubMed  Google Scholar 

  • Schmitz A, Oustry A, Vaiman D, Chaput B, Frelat G, et al. (1998) Comparative karyotype of pig and cattle using whole chromosome painting probes. Hereditas 128: 257–263

    Article  PubMed  Google Scholar 

  • Shiue YL, Bickel LA, Caetano AR, Millon LV, Clark RS, et al. (1999) A synteny map of the horse genome comprised of 240 microsatellite and RAPD markers. Anim Genet 30: 1–9

    Article  PubMed  Google Scholar 

  • Smith J, Paton IR, Murray F, Crooijmans RP, Groenen MAM, et al. (2002) Comparative mapping of human Chromosome 19 with the chicken shows conserved synteny and gives an insight into chromosomal evolution. Mamm Genome 13: 310–315

    Article  PubMed  Google Scholar 

  • Stanyon R, Stone G, Garcia M, Frönicke L (2003) Reciprocal chromosome painting shows that squirrels, unlike murid rodents, have a highly conserved genome organization. Genomics 82: 245–249

    Article  PubMed  Google Scholar 

  • Swinburne J, Gerstenberg C, Breen M, Aldridge V, Lockhart L, et al. (2000) First comprehensive low-density horse linkage map based on two 3-generation, full-sibling, cross-bred horse reference families. Genomics 66: 123–134

    Article  PubMed  Google Scholar 

  • Takahashi T, Yawata M, Raudsepp T, Lear TL, Chowdhary BP, et al. (2004) Natural killer cell receptors in the horse: evidence for the existence of multiple transcribed LY49 genes. Eur J Immunol 34: 773–784

    Article  PubMed  Google Scholar 

  • Tallmadge RL, Hopman TJ, Schug MD, Aquadro CF, Bowling AT, et al. (1999) Equine dinucleotide repeat loci COR061-COR080. Anim Genet 30: 462–463

    PubMed  Google Scholar 

  • Tian Y, Nie W, Wang J, Ferguson-Smith MA, Yang F (2004) Chromosome evolution in bears: reconstructing phylogenetic relationships by cross-species chromosome painting. Chromosome Res 12: 55–63

    Article  PubMed  Google Scholar 

  • Tozaki T, Penedo MCT, Oliveira RP, Katz JP, Millon LV, et al. (2004) Isolation, characterization and chromosome assignment of 341 newly isolated equine microsatellite markers. Anim Genet 35: 487–496

    Article  PubMed  Google Scholar 

  • Trifonov V, Yang F, Ferguson-Smith MA, Robinson TJ (2003) Cross-species chromosome painting in the Perissodactyla: delimitation of homologous regions in Burchell’s zebra (Equus burchellii) and the white (Ceratotherium simum) and black rhinoceros (Diceros bicornis). Cytogenet Genome Res 103: 104–110

    Article  PubMed  Google Scholar 

  • van Haeringen WA, van de Goor LHP, van der Hout N, Lenstra JA (1998) Characterization of 24 equine microsatellite loci. Anim Genet 29: 153–156

    Google Scholar 

  • van Tuinen M, Hadly EA (2004) Calibration and error in placental molecular clocks: A conservative approach using the cetartiodactyl fossil record. J Hered 95: 200–208

    Article  PubMed  Google Scholar 

  • Volleth M, Klett C, Kollak A, Dixkens C, Winter Y, et al. (1999) Zoo-FISH analysis in a species of the order Chiroptera: Glossophaga soricina (Phyllostomidae). Chromosome Res 7: 57–64

    Article  PubMed  Google Scholar 

  • Volleth M, Heller K-G, Pfeiffer RA, Hameister H (2002) A comparative Zoo-FISH analysis in bats elucidates the phylogenetic relationships between Megachiroptera and five microchiropteran families. Chromosome Res 10: 477–497

    Article  PubMed  Google Scholar 

  • Wagner ML, Goh G, Wu JT, Morrison LY, Alexander LJ, et al. (2004a) Sixty-seven new equine microsatellite loci assigned to the equine radiation hybrid map. Anim Genet 35: 484–486

    Article  Google Scholar 

  • Wagner ML, Goh G, Wu JT, Raudsepp T, Morrison LY, et al. (2004b) Radiation hybrid mapping of 63 previously unreported equine microsatellite loci. Anim Genet 35: 159–162

    Article  Google Scholar 

  • Wagner ML, Goh G, Wu JT, Raudsepp T, Morrison LY, et al. (2004c) Radiation hybrid mapping of 75 previously unreported equine microsatellite loci. Anim Genet 35: 68–71

    Article  Google Scholar 

  • Yang F, Müller S, Just R, Ferguson-Smith MA, Wienberg J (1997) Comparative chromosome painting in mammals: human and the Indian muntjac (Muntiacus muntjak vaginalis). Genomics 39: 396–401

    Article  PubMed  Google Scholar 

  • Yang F, O’Brien PCM, Milne BS, Graphodatsky AS, Solanky N, et al. (1999) A Complete comparative chromosome map for the dog, red fox, and human and its integration with canine genetic maps. Genomics 62: 189–202

    Article  PubMed  Google Scholar 

  • Yang F, Alkalaeva EZ, Perelman PL, Pardini AT, Harrison WR, et al. (2003a) Reciprocal chromosome painting among human, aardvark, and elephant (superorder Afrotheria) reveals the likely eutherian ancestral karyotype. Proc Natl Acad Sci U S A 100: 1062–1066

    Article  Google Scholar 

  • Yang F, Fu B, O’Brien PCM, Robinson TJ, Ryder OA, et al. (2003b) Karyotypic relationships of horses and zebras: results of cross-species chromosome painting. Cytogenet Genome Res 102: 235–243

    Article  Google Scholar 

  • Yang F, Fu B, O’Brien PCM, Nie W, et al. (2004) Refined genome-wide comparative map of the domestic horse, donkey and human based on cross-species chromosome painting: insight into the occasional fertility of mules. Chromosome Res 12: 65–76

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This project was funded by grants from the Texas Higher Education Board (ARP 010366-0162-2001, BPC; ATP 000517-0306-2003, BPC and JEW), NRICGP/USDA Grant 2003-03687 (BPC), Texas Equine Research Foundation (BPC and LCS), Link Endowment (BPC and LCS), American Quarter Horse Association, and the Dorothy Russell Havemeyer Foundation. Additional support was available from the USDA-NRSP-8 Coordinators Fund. We would like to thank Dr. Pat Venta, Michigan State University, for design and supply of several primer pairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhanu P. Chowdhary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brinkmeyer-Langford, C., Raudsepp, T., Lee, EJ. et al. A high-resolution physical map of equine homologs of HSA19 shows divergent evolution compared with other mammals. Mamm Genome 16, 631–649 (2005). https://doi.org/10.1007/s00335-005-0023-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-005-0023-1

Keywords

Navigation