Skip to main content

Advertisement

Log in

Mammary cancer susceptibility: human genes and rodent models

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Breast cancer is a complex disease, showing a strong genetic component. Several human susceptibility genes have been identified, especially in the last few months. Most of these genes are low-penetrance genes and it is clear that numerous other susceptibility genes remain to be identified. The function of several susceptibility genes indicates that one critical biological pathway is the DNA damage response. However, other pathways certainly play a significant role in breast cancer susceptibility. Rodent models of breast cancer are useful models in two respects. They can help identify new mammary susceptibility genes by taking advantage of the very divergent susceptibilities exhibited by different mouse or rat strains and carrying out relevant genetic analyses. They also provide investigators with experimental systems that can help decipher the mechanism(s) of resistance to mammary cancer. Recent genetic and biological results obtained with mouse and especially with rat strains indicate that (1) numerous quantitative trait loci control mammary cancer susceptibility or resistance, with distinct loci acting in different strains, and (2) distinct resistance mechanisms operate in different rat resistant strains, precocious mammary differentiation being one of these mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahmed M, Rahman N (2006) ATM and breast cancer susceptibility. Oncogene 25:5906–5911

    Article  PubMed  CAS  Google Scholar 

  • Antoniou AC, Easton DF (2006) Models of genetic susceptibility to breast cancer. Oncogene 25:5898–5905

    Article  PubMed  CAS  Google Scholar 

  • Arif JM, Smith WA, Gupta RC (1999) DNA adduct formation and persistence in rat tissues following exposure to the mammary carcinogen dibenzo[a,l]pyrene. Carcinogenesis 20:1147–1150

    Article  PubMed  CAS  Google Scholar 

  • Bai RK, Leal SM, Covarrubias D, Liu A, Wong LJ (2007) Mitochondrial genetic background modifies breast cancer risk. Cancer Res 67:4687–4694

    Article  PubMed  CAS  Google Scholar 

  • Balmain A, Gray J, Ponder B (2003) The genetics and genomics of cancer. Nat Genet 33 Suppl:238–244

    Article  PubMed  CAS  Google Scholar 

  • Bau DT, Mau YC, Ding SL, Wu PE, Shen CY (2007) DNA double-strand break repair capacity and risk of breast cancer. Carcinogenesis 28:1726–1730

    Article  PubMed  CAS  Google Scholar 

  • Baynes C, Healey CS, Pooley KA, Scollen S, Luben RN, et al. (2007) Common variants in the ATM, BRCA1, BRCA2, CHEK2 and TP53 cancer susceptibility genes are unlikely to increase breast cancer risk. Breast Cancer Res 9:R27

    Article  PubMed  CAS  Google Scholar 

  • Benton ME, Chen KS, Haag JD, Sattler CA, Gould MN (1999) Precocious differentiation of the virgin Wistar-Kyoto rat mammary gland. Endocrinology 140:2659–2671

    Article  PubMed  CAS  Google Scholar 

  • Bhoumik A, Takahashi S, Breitweiser W, Shiloh Y, Jones N, et al. (2005) ATM-dependent phosphorylation of ATF2 is required for the DNA damage response. Mol Cell 18:577–587

    Article  PubMed  CAS  Google Scholar 

  • Blackburn AC, Hill LZ, Roberts AL, Wang J, Aud D, et al. (2007) Genetic mapping in mice identifies DMBT1 as a candidate modifier of mammary tumors and breast cancer risk. Am J Pathol 170:2030–2041

    Article  PubMed  CAS  Google Scholar 

  • Blakely CM, Stoddard AJ, Belka GK, Dugan KD, Notarfrancesco KL, et al. (2006) Hormone-induced protection against mammary tumorigenesis is conserved in multiple rat strains and identifies a core gene expression signature induced by pregnancy. Cancer Res 66:6421–6431

    Article  PubMed  CAS  Google Scholar 

  • Bradbury AR, Olopade OI (2007) Genetic susceptibility to breast cancer. Rev Endocr Metab Disord 8:255-267

    Article  PubMed  Google Scholar 

  • Brody JG, Rudel RA, Michels KB, Moysich KB, Bernstein L, et al. (2007) Environmental pollutants, diet, physical activity, body size, and breast cancer: where do we stand in research to identify opportunities for prevention? Cancer 109:2627–2634

    Article  PubMed  Google Scholar 

  • Callahan R, Smith GH (2000) MMTV-induced mammary tumorigenesis: gene discovery, progression to malignancy and cellular pathways. Oncogene 19:992–1001

    Article  PubMed  CAS  Google Scholar 

  • Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, et al. (2006) Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 295:2492–2502

    Article  PubMed  CAS  Google Scholar 

  • Catteau A, Harris WH, Xu CF, Solomon E (1999) Methylation of the BRCA1 promoter region in sporadic breast and ovarian cancer: correlation with disease characteristics. Oncogene 18:1957–1965

    Article  PubMed  CAS  Google Scholar 

  • Chan KY, Ozcelik H, Cheung AN, Ngan HY, Khoo US (2002) Epigenetic factors controlling the BRCA1 and BRCA2 genes in sporadic ovarian cancer. Cancer Res 62:4151–4156

    PubMed  CAS  Google Scholar 

  • Chang MY, Boulden J, Sutanto-Ward E, Duhadaway JB, Soler AP, et al. (2007) Bin1 ablation in mammary gland delays tissue remodeling and drives cancer progression. Cancer Res 67:100–107

    Article  PubMed  CAS  Google Scholar 

  • Coffey RJ Jr, Meise KS, Matsui Y, Hogan BL, Dempsey PJ, et al. (1994) Acceleration of mammary neoplasia in transforming growth factor alpha transgenic mice by 7,12-dimethylbenzanthracene. Cancer Res 54:1678–1683

    PubMed  CAS  Google Scholar 

  • Cohen PR, Kohn SR, Kurzrock R (1991) Association of sebaceous gland tumors and internal malignancy: the Muir-Torre syndrome. Am J Med 90:606–613

    PubMed  CAS  Google Scholar 

  • Collaborative Group on Hormonal Factors in Breast Cancer (2001) Familial breast cancer: collaborative reanalysis of individual data from 52 epidemiological studies including 58,209 women with breast cancer and 101,986 women without the disease. Lancet 358:1389–1399

    Article  Google Scholar 

  • Cotroneo MS, Merry GM, Haag JD, Lan H, Shepel LA, et al. (2006) The Mcs7 quantitative trait locus is associated with an increased susceptibility to mammary cancer in congenic rats and an allele-specific imbalance. Oncogene 25:5011–5017

    Article  PubMed  CAS  Google Scholar 

  • Cotroneo MS, Haag JD, Zan Y, Lopez CC, Thuwajit P, et al. (2007) Characterizing a rat Brca2 knockout model. Oncogene 26:1626–1635

    Article  PubMed  CAS  Google Scholar 

  • Cox A, Dunning AM, Garcia-Closas M, Balasubramanian S, Reed MW, et al. (2007) A common coding variant in CASP8 is associated with breast cancer risk. Nat Genet 39:352–358

    Article  PubMed  CAS  Google Scholar 

  • Cozma D, Lukes L, Rouse J, Qiu TH, Liu ET, et al. (2002) A bioinformatics-based strategy identifies c-Myc and Cdc25A as candidates for the Apmt mammary tumor latency modifiers. Genome Res 12:969–975

    Article  PubMed  CAS  Google Scholar 

  • Crawford NP, Hunter KW (2006) New perspectives on hereditary influences in metastatic progression. Trends Genet 22:555–561

    Article  PubMed  CAS  Google Scholar 

  • Cui Z, Willingham MC, Hicks AM, Alexander-Miller MA, Howard TD, et al. (2003) Spontaneous regression of advanced cancer: identification of a unique genetically determined, age-dependent trait in mice. Proc Natl Acad Sci U S A 100:6682–6687

    Article  PubMed  CAS  Google Scholar 

  • Dahlman I, Eaves IA, Kosoy R, Morrison VA, Heward J, et al. (2002) Parameters for reliable results in genetic association studies in common disease. Nat Genet 30:149–150

    Article  PubMed  CAS  Google Scholar 

  • Dankort DL, Muller WJ (2000) Signal transduction in mammary tumorigenesis: a transgenic perspective. Oncogene 19:1038–1044

    Article  PubMed  CAS  Google Scholar 

  • Dao TL (1964) Carcinogenesis of mammary gland in rat. Prog Exp Tumor Res 14:157–216

    PubMed  CAS  Google Scholar 

  • Demant P (2003) Cancer susceptibility in the mouse: genetics, biology and implications for human cancer. Nat Rev Genet 4:721–734

    Article  PubMed  CAS  Google Scholar 

  • Dickson C, Creer A, Fantl V (2000) Mammary gland oncogenes as indicators of pathways important in mammary gland development. Oncogene 19:1097–1101

    Article  PubMed  CAS  Google Scholar 

  • Dunn GP, Old LJ, Schreiber RD (2004) The three Es of cancer immunoediting. Ann Rev Immunol 22:329–360

    Article  CAS  Google Scholar 

  • Dunning WF, Curtis MR, Segaloff A (1953) Strain differences in response to estrone and the induction of mammary gland, adrenal, and bladder cancer in rats. Cancer Res 13:147–152

    PubMed  CAS  Google Scholar 

  • Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, et al. (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447:1087–1093

    Article  PubMed  CAS  Google Scholar 

  • Erkko H, Xia B, Nikkila J, Schleutker J, Syrjakoski K, et al. (2007) A recurrent mutation in PALB2 in Finnish cancer families. Nature 446:316–319

    Article  PubMed  CAS  Google Scholar 

  • Futreal PA, Liu Q, Shattuck-Eidens D, Cochran C, Harshman K, et al. (1994) BRCA1 mutations in primary breast and ovarian carcinomas. Science 266:120–122

    Article  PubMed  CAS  Google Scholar 

  • Gaudet MM, Egan KM, Lissowska J, Newcomb PA, Brinton LA, et al. (2007) Genetic variation in tumor necrosis factor and lymphotoxin-alpha (TNF-LTA) and breast cancer risk. Hum Genet 121:483–490

    Article  PubMed  CAS  Google Scholar 

  • Gould KA, Tochacek M, Schaffer BS, Reindl TM, Murrin CR, et al. (2004) Genetic determination of susceptibility to estrogen-induced mammary cancer in the ACI rat: mapping of Emca1 and Emca2 to chromosomes 5 and 18. Genetics 168:2113–2125

    Article  PubMed  CAS  Google Scholar 

  • Gould MN (1986) Inheritance and site of expression of genes controlling susceptibility to mammary cancer in an inbred rat model. Cancer Res 46:1199–1202

    PubMed  CAS  Google Scholar 

  • Gould M (1989) Modulation of mammary carcinogenesisby enhancer and suppressor genes. In: Genes and Signal Transduction in Multistage Carcinogenesis, Colburn NH (ed.) (New York: Dekker), pp 19–38

  • Gould MN (1995) Rodent models for the study of etiology, prevention and treatment of breast cancer. Semin Cancer Biol 6:147–152

    Article  PubMed  CAS  Google Scholar 

  • Griffiths MM, Encinas JA, Remmers EF, Kuchroo VK, Wilder RL (1999) Mapping autoimmunity genes. Curr Opin Immunol 11:689–700

    Article  PubMed  CAS  Google Scholar 

  • Gudmundsdottir K, Ashworth A (2006) The roles of BRCA1 and BRCA2 and associated proteins in the maintenance of genomic stability. Oncogene 25:5864–5874

    Article  PubMed  CAS  Google Scholar 

  • Gullino PM, Pettigrew HM, Grantham FH (1975) N-nitrosomethylurea as mammary gland carcinogen in rats. J Natl Cancer Inst 54:401–414

    PubMed  CAS  Google Scholar 

  • Guy CT, Cardiff RD, Muller WJ (1992) Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol 12:954–961

    PubMed  CAS  Google Scholar 

  • Haag JD, Newton MA, Gould MN (1992) Mammary carcinoma suppressor and susceptibility genes in the Wistar-Kyoto rat. Carcinogenesis 13:1933–1935

    Article  PubMed  CAS  Google Scholar 

  • Haag JD, Shepel LA, Kolman BD, Monson DM, Benton ME, et al. (2003) Congenic rats reveal three independent Copenhagen alleles within the Mcs1 quantitative trait locus that confer resistance to mammary cancer. Cancer Res 63:5808–5812

    PubMed  CAS  Google Scholar 

  • Hakem R, de la Pompa JL, Mak TW (1998) Developmental studies of Brca1 and Brca2 knock-out mice. J Mammary Gland Biol Neoplasia 3:431–445

    Article  PubMed  CAS  Google Scholar 

  • Harris SR, Mehta RS, Hartle DK, Broderson JR, Bunce OR (1994) Failure of high fat diets to promote mammary cancers in spontaneously hypertensive rats. Cancer Lett 87:9–15

    Article  PubMed  CAS  Google Scholar 

  • Hedrich H (1990) Genetic Monitoring of Inbred Strains of Rats (Stuttgart, New York: Gustav Fischer Verlag)

    Google Scholar 

  • Heikkinen K, Rapakko K, Karppinen SM, Erkko H, Knuutila S, et al. (2006) RAD50 and NBS1 are breast cancer susceptibility genes associated with genomic instability. Carcinogenesis 27:1593–1599

    Article  PubMed  CAS  Google Scholar 

  • Hicks AM, Riedlinger G, Willingham MC, Alexander-Miller MA, Von Kap-Herr C, et al. (2006) Transferable anticancer innate immunity in spontaneous regression/complete resistance mice. Proc Natl Acad Sci U S A 103:7753–7758

    Article  PubMed  CAS  Google Scholar 

  • Hilton JL, Geisler JP, Rathe JA, Hattermann-Zogg MA, DeYoung B, et al. (2002) Inactivation of BRCA1 and BRCA2 in ovarian cancer. J Natl Cancer Inst 94:1396–1406

    PubMed  CAS  Google Scholar 

  • Hopper JL (2001) Genetic epidemiology of female breast cancer. Semin Cancer Biol 11:367–374

    Article  PubMed  CAS  Google Scholar 

  • Hsu LC, Kennan WS, Shepel LA, Jacob HJ, Szpirer C, et al. (1994) Genetic identification of Mcs-1, a rat mammary carcinoma suppressor gene. Cancer Res 54:2765–2770

    PubMed  CAS  Google Scholar 

  • Humphreys RC, Hennighausen L (2000) Transforming growth factor alpha and mouse models of human breast cancer. Oncogene 19:1085–1091

    Article  PubMed  CAS  Google Scholar 

  • Hunter DJ, Kraft P, Jacobs KB, Cox DG, Yeager M, et al. (2007) A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet 39:870–874

    Article  PubMed  CAS  Google Scholar 

  • Hunter KW, Broman KW, Voyer TL, Lukes L, Cozma D, et al. (2001) Predisposition to efficient mammary tumor metastatic progression is linked to the breast cancer metastasis suppressor gene Brms1. Cancer Res 61:8866–8872

    PubMed  CAS  Google Scholar 

  • Isaacs JT (1986) Genetic control of resistance to chemically induced mammary adenocarcinogenesis in the rat. Cancer Res 46:3958–3963

    PubMed  CAS  Google Scholar 

  • Isaacs JT (1988) Inheritance of a genetic factor from the Copenhagen rat and the suppression of chemically induced mammary adenocarcinogenesis. Cancer Res 48:2204–2213

    PubMed  CAS  Google Scholar 

  • Isaacs JT (1991) A mammary cancer suppressor gene and its site of action in the rat. Cancer Res 51:1591–1595

    PubMed  CAS  Google Scholar 

  • Jerry DJ, Kittrell FS, Kuperwasser C, Laucirica R, Dickinson ES, et al. (2000) A mammary-specific model demonstrates the role of the p53 tumor suppressor gene in tumor development. Oncogene 19:1052–1058

    Article  PubMed  CAS  Google Scholar 

  • Ke Y, Wu D, Princen F, Nguyen T, Pang Y, et al. (2007) Role of Gab2 in mammary tumorigenesis and metastasis. Oncogene 26:4951–4960

    Article  PubMed  CAS  Google Scholar 

  • Kim U, Clifton KH, Furth J (1960) A highly inbred line of Wistar rats yielding spontaneous mammo-somatotropic pituitary and other tumors. J Natl Cancer Inst 24:1031–1055

    PubMed  CAS  Google Scholar 

  • King MC, Marks JH, Mandell JB (2003) Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science 302:643–646

    Article  PubMed  CAS  Google Scholar 

  • Koch JG, Gu X, Han Y, El-Naggar AK, Olson MV, et al. (2007) Mammary tumor modifiers in BALB/cJ mice heterozygous for p53. Mamm Genome 18:300-309

    Article  PubMed  CAS  Google Scholar 

  • Korkola JE, Archer MC (1999) Resistance to mammary tumorigenesis in Copenhagen rats is associated with the loss of preneoplastic lesions. Carcinogenesis 20:221–227

    Article  PubMed  CAS  Google Scholar 

  • Korkola JE, Wood GA, Archer MC (1997) Resistance to chemically-induced mammary tumors in Copenhagen X nude-derived F2 athymic rats: evidence that T-cell immunity is not involved in Copenhagen resistance. Carcinogenesis 18:53–57

    Article  PubMed  CAS  Google Scholar 

  • Kozak C, Peters G, Pauley R, Morris V, Michalides R, et al. (1987) A standardized nomenclature for endogenous mouse mammary tumor viruses. J Virol 61:1651–1654

    PubMed  CAS  Google Scholar 

  • Lan H, Kendziorski CM, Haag JD, Shepel LA, Newton MA, et al. (2001) Genetic loci controlling breast cancer susceptibility in the Wistar-Kyoto rat. Genetics 157:331–339

    PubMed  CAS  Google Scholar 

  • Lancaster M, Rouse J, Hunter KW (2005) Modifiers of mammary tumor progression and metastasis on mouse chromosomes 7, 9, and 17. Mamm Genome 16:120–126

    Article  PubMed  CAS  Google Scholar 

  • Lavin MF, Shiloh Y (1997) The genetic defect in ataxia-telangiectasia. Annu Rev Immunol 15:177–202

    Article  PubMed  CAS  Google Scholar 

  • Le Voyer T, Lu Z, Babb J, Lifsted T, Williams M, et al. (2000) An epistatic interaction controls the latency of a transgene-induced mammary tumor. Mamm Genome 11:883–889

    Article  PubMed  CAS  Google Scholar 

  • Le Voyer T, Rouse J, Lu Z, Lifsted T, Williams M, et al. (2001) Three loci modify growth of a transgene-induced mammary tumor: suppression of proliferation associated with decreased microvessel density. Genomics 74:253–261

    Article  PubMed  CAS  Google Scholar 

  • Lella V, Stieber D, Riviere M, Szpirer J, Szpirer C (2007) Mammary cancer resistance and precocious mammary differentiation in the WKY rat: Identification of 2 quantitative trait loci. Int J Cancer 121:1738–1743

    Article  PubMed  CAS  Google Scholar 

  • Li H, Zhang Y, Su T, Santella RM, Weinstein IB (2006) Hint1 is a haplo-insufficient tumor suppressor in mice. Oncogene 25:713–721

    Article  PubMed  CAS  Google Scholar 

  • Lifsted T, Le Voyer T, Williams M, Muller W, Klein-Szanto A, et al. (1998) Identification of inbred mouse strains harboring genetic modifiers of mammary tumor age of onset and metastatic progression. Int J Cancer 77:640–644

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Wei Q, Bondy ML, Li D, Brewster A, et al. (2006) Polymorphisms and haplotypes of the NBS1 gene are associated with risk of sporadic breast cancer in non-Hispanic white women < or = 55 years. Carcinogenesis 27:2209–2216

    Article  PubMed  CAS  Google Scholar 

  • Maekawa T, Shinagawa T, Sano Y, Sakuma T, Nomura S, et al. (2007) Reduced levels of ATF-2 predispose mice to mammary tumors. Mol Cell Biol 27:1730–1744

    Article  PubMed  CAS  Google Scholar 

  • Mao JH, Balmain A (2003) Genomic approaches to identification of tumour-susceptibility genes using mouse models. Curr Opin Genet Dev 13:14–19

    Article  PubMed  CAS  Google Scholar 

  • Martin AM, Weber BL (2000) Genetic and hormonal risk factors in breast cancer. J Natl Cancer Inst 92:1126–1135

    Article  PubMed  CAS  Google Scholar 

  • Mathew CG (2006) Fanconi anaemia genes and susceptibility to cancer. Oncogene 25:5875–5884

    Article  PubMed  CAS  Google Scholar 

  • Meijers-Heijboer H, van den Ouweland A, Klijn J, Wasielewski M, de Snoo A, et al. (2002) Low-penetrance susceptibility to breast cancer due to CHEK2(*)1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nat Genet 31:55–59

    Article  PubMed  CAS  Google Scholar 

  • Michels KB, Mohllajee AP, Roset-Bahmanyar E, Beehler GP, Moysich KB (2007) Diet and breast cancer: a review of the prospective observational studies. Cancer 109:2712–2749

    Article  PubMed  CAS  Google Scholar 

  • Mikaelian I, Blades N, Churchill GA, Fancher K, Knowles BB, et al. (2004) Proteotypic classification of spontaneous and transgenic mammary neoplasms. Breast Cancer Res 6:R668–679

    Article  PubMed  CAS  Google Scholar 

  • Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, et al. (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266:66–71

    Article  PubMed  CAS  Google Scholar 

  • Mironchik Y, Winnard PT Jr, Vesuna F, Kato Y, Wildes F, et al. (2005) Twist overexpression induces in vivo angiogenesis and correlates with chromosomal instability in breast cancer. Cancer Res 65:10801–10809

    Article  PubMed  CAS  Google Scholar 

  • Moore CJ, Bachhuber AJ, Gould MN (1983) Relationship of mammary tumor susceptibility, mammary cell-mediated mutagenesis, and metabolism of polycyclic aromatic hydrocarbons in four types of rats. J Natl Cancer Inst 70:777–784

    PubMed  CAS  Google Scholar 

  • Moore CJ, Tricomi WA, Gould MN (1988) Comparison of 7,12-dimethylbenz[a]anthracene metabolism and DNA binding in mammary epithelial cells from three rat strains with differing susceptibilities to mammary carcinogenesis. Carcinogenesis 9:2099–2102

    Article  PubMed  CAS  Google Scholar 

  • Nadeau JH (2001) Modifier genes in mice and humans. Nat Rev Genet 2:165–174

    Article  PubMed  CAS  Google Scholar 

  • Nathanson KL, Weber BL (2001) “Other” breast cancer susceptibility genes: searching for more holy grail. Hum Mol Genet 10:715–720

    Article  PubMed  CAS  Google Scholar 

  • Nathanson KL, Wooster R, Weber BL (2001) Breast cancer genetics: what we know and what we need. Nat Med 7:552–556

    Article  PubMed  CAS  Google Scholar 

  • Nevanlinna H, Bartek J (2006) The CHEK2 gene and inherited breast cancer susceptibility. Oncogene 25:5912–5919

    Article  PubMed  CAS  Google Scholar 

  • Nusse R, Varmus HE (1982) Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31:99–109

    Article  PubMed  CAS  Google Scholar 

  • Park YG, Zhao X, Lesueur F, Lowy DR, Lancaster M, et al. (2005) Sipa1 is a candidate for underlying the metastasis efficiency modifier locus Mtes1. Nat Genet 37:1055–1062

    Article  PubMed  CAS  Google Scholar 

  • Parkin DM (2001) Global cancer statistics in the year 2000. Lancet Oncol 2:533–543

    Article  PubMed  CAS  Google Scholar 

  • Parkin DM (2004) International variation. Oncogene 23:6329–6340

    Article  PubMed  CAS  Google Scholar 

  • Peto J, Mack TM (2000) High constant incidence in twins and other relatives of women with breast cancer. Nat Genet 26:411–414

    Article  PubMed  CAS  Google Scholar 

  • Pharoah PD, Antoniou A, Bobrow M, Zimmern RL, Easton DF, et al. (2002) Polygenic susceptibility to breast cancer and implications for prevention. Nat Genet 31:33–36

    Article  PubMed  CAS  Google Scholar 

  • Qiu TH, Chandramouli GV, Hunter KW, Alkharouf NW, Green JE, et al. (2004) Global expression profiling identifies signatures of tumor virulence in MMTV-PyMT-transgenic mice: correlation to human disease. Cancer Res 64:5973–5981

    Article  PubMed  CAS  Google Scholar 

  • Quan X, Laes JF, Stieber D, Riviere M, Russo J, et al. (2006) Genetic identification of distinct loci controlling mammary tumor multiplicity, latency, and aggressiveness in the rat. Mamm Genome 17:310–321

    Article  PubMed  CAS  Google Scholar 

  • Rahman N, Seal S, Thompson D, Kelly P, Renwick A, et al. (2007) PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet 39:165–167

    Article  PubMed  CAS  Google Scholar 

  • Rapp JP (2000) Genetic analysis of inherited hypertension in the rat. Physiol Rev 80:135–172

    PubMed  CAS  Google Scholar 

  • Richard S, Vogel G, Huot ME, Guo T, Muller WJ, et al. (2007) Sam68 haploinsufficiency delays onset of mammary tumorigenesis and metastasis. Oncogene (online 9 July 2007). doi:10.1038/sj.onc.1210652

  • Rolstad B (2001) The athymic nude rat: an animal experimental model to reveal novel aspects of innate immune responses? Immunol Rev 184:136–144

    Article  PubMed  CAS  Google Scholar 

  • Roshani L, Mallon P, Sjostrand E, Wedekind D, Szpirer J, et al. (2005) Genetic analysis of susceptibility to endometrial adenocarcinoma in the BDII rat model. Cancer Genet Cytogenet 158:137–141

    Article  PubMed  CAS  Google Scholar 

  • Ross SR (2000) Using genetics to probe host-virus interactions; the mouse mammary tumor virus model. Microbes Infect 2:1215–1223

    Article  PubMed  CAS  Google Scholar 

  • Russo IH, Russo J (1996) Mammary gland neoplasia in long-term rodent studies. Environ Health Perspect 104:938–967

    Article  PubMed  CAS  Google Scholar 

  • Russo J, Russo IH (1999) Cellular basis of breast cancer susceptibility. Oncol Res 11:169–178

    PubMed  CAS  Google Scholar 

  • Russo J, Saby J, Isenberg WM, Russo IH (1977) Pathogenesis of mammary carcinomas induced in rats by 7,12-dimethylbenz[a]anthracene. J Natl Cancer Inst 59:435–445

    Google Scholar 

  • Russo J, Tay LK, Russo IH (1982) Differentiation of the mammary gland and susceptibility to carcinogenesis. Breast Cancer Res Treat 2:5–73

    Article  PubMed  CAS  Google Scholar 

  • Russo J, Gusterson BA, Rogers AE, Russo IH, Wellings SR, et al. (1990) Comparative study of human and rat mammary tumorigenesis. Lab Invest 62:244–278

    PubMed  CAS  Google Scholar 

  • Russo J, Mailo D, Hu YF, Balogh G, Sheriff F, et al. (2005) Breast differentiation and its implication in cancer prevention. Clin Cancer Res 11:931s–936s

    PubMed  CAS  Google Scholar 

  • Sahlin P, Windh P, Lauritzen C, Emanuelsson M, Gronberg H, et al. (2007) Women with Saethre-Chotzen syndrome are at increased risk of breast cancer. Genes Chromosomes Cancer 46:656–660

    Article  PubMed  CAS  Google Scholar 

  • Samuelson DJ, Haag JD, Lan H, Monson DM, Shultz MA, et al. (2003) Physical evidence of Mcs5, a QTL controlling mammary carcinoma susceptibility, in congenic rats. Carcinogenesis 24:1455–1460

    Article  PubMed  CAS  Google Scholar 

  • Samuelson DJ, Aperavich BA, Haag JD, Gould MN (2005) Fine mapping reveals multiple loci and a possible epistatic interaction within the mammary carcinoma susceptibility quantitative trait locus, Mcs5. Cancer Res 65:9637–9642

    Article  PubMed  CAS  Google Scholar 

  • Samuelson DJ, Hesselson SE, Aperavich BA, Zan Y, Haag JD, Trentham-Dietz A, Hampton JM, Mau B, Chen KS, Baynes C, Khaw KT, Luben R, Perkins B, Shah M, Pharoah PD, Dunning AM, Easton DF, Ponder BA, Gould MN (2007) Rat Mcs5a is a compound quantitative trait locus with orthologous human loci that associate with breast cancer risk. Proc Natl Acad Sci USA 104:6299–6304

    Article  PubMed  CAS  Google Scholar 

  • Sasco AJ (2003) Breast cancer and the environment. Horm Res 60 Suppl 3:50

    Article  PubMed  CAS  Google Scholar 

  • Sasco AJ, Kaaks R, Little RE (2003) Breast cancer: occurrence, risk factors and hormone metabolism. Expert Rev Anticancer Ther 3:546–562

    Article  PubMed  CAS  Google Scholar 

  • Schaffer BS, Lachel CM, Pennington KL, Murrin CR, Strecker TE, et al. (2006) Genetic bases of estrogen-induced tumorigenesis in the rat: mapping of loci controlling susceptibility to mammary cancer in a Brown Norway x ACI intercross. Cancer Res 66:7793–7800

    Article  PubMed  CAS  Google Scholar 

  • Schumacher FR, Feigelson HS, Cox DG, Haiman CA, Albanes D, et al. (2007) A common 8q24 variant in prostate and breast cancer from a large nested case-control study. Cancer Res 67:2951–2956

    Article  PubMed  CAS  Google Scholar 

  • Seal S, Thompson D, Renwick A, Elliott A, Kelly P, et al. (2006) Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles. Nat Genet 38:1239–1241

    Article  PubMed  CAS  Google Scholar 

  • Shellabarger CJ (1972) Mammary neoplastic response of Lewis and Sprague-Dawley female rats to 7,12-dimethylbenz(a)anthracene or x-ray. Cancer Res 32:883–885

    PubMed  CAS  Google Scholar 

  • Shellabarger CJ, Stone JP, Holtzman S (1978) Rat differences in mammary tumor induction with estrogen and neutron radiation. J Natl Cancer Inst 61:1505–1508

    PubMed  CAS  Google Scholar 

  • Shepel LA, Lan H, Haag JD, Brasic GM, Gheen ME, et al. (1998) Genetic identification of multiple loci that control breast cancer susceptibility in the rat. Genetics 149:289–299

    PubMed  CAS  Google Scholar 

  • Shiloh Y (2006) The ATM-mediated DNA-damage response: taking shape. Trends Biochem Sci 31:402–410

    Article  PubMed  CAS  Google Scholar 

  • Shima N, Alcaraz A, Liachko I, Buske TR, Andrews CA, et al. (2007) A viable allele of Mcm4 causes chromosome instability and mammary adenocarcinomas in mice. Nat Genet 39:93–98

    Article  PubMed  CAS  Google Scholar 

  • Sinn E, Muller W, Pattengale P, Tepler I, Wallace R, et al. (1987) Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: synergistic action of oncogenes in vivo. Cell 49:465–475

    Article  PubMed  CAS  Google Scholar 

  • Snyderwine EG (1999) Mammary gland carcinogenesis by 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine in rats: possible mechanisms. Cancer Lett 143:211–215

    Article  PubMed  CAS  Google Scholar 

  • Spady TJ, Harvell DM, Snyder MC, Pennington KL, McComb RD, et al. (1998) Estrogen-induced tumorigenesis in the Copenhagen rat: disparate susceptibilities to development of prolactin-producing pituitary tumors and mammary carcinomas. Cancer Lett 124:95–103

    Article  PubMed  CAS  Google Scholar 

  • Stacey SN, Manolescu A, Sulem P, Rafnar T, Gudmundsson J, et al. (2007) Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor-positive breast cancer. Nat Genet 39:865–869

    Article  PubMed  CAS  Google Scholar 

  • Steffen J, Nowakowska D, Niwinska A, Czapczak D, Kluska A, et al. (2006) Germline mutations 657del5 of the NBS1 gene contribute significantly to the incidence of breast cancer in Central Poland. Int J Cancer 119:472–475

    Article  PubMed  CAS  Google Scholar 

  • Stieber D, Piessevaux G, Riviere M, Laes JF, Quan X, et al. (2007) Isolation of two regions on rat chromosomes 5 and 18 affecting mammary cancer susceptibility. Int J Cancer 120:1678–1683

    Article  PubMed  CAS  Google Scholar 

  • Stone JP, Holtzman S, Shellabarger CJ (1979) Neoplastic responses and correlated plasma prolactin levels in diethylstilbestrol-treated ACI and Sprague-Dawley rats. Cancer Res 39:773–778

    PubMed  CAS  Google Scholar 

  • Sun T, Gao Y, Tan W, Ma S, Shi Y, et al. (2007) A six-nucleotide insertion-deletion polymorphism in the CASP8 promoter is associated with susceptibility to multiple cancers. Nat Genet 39:605–613

    Article  PubMed  CAS  Google Scholar 

  • Swift M, Morrell D, Massey RB, Chase CL (1991) Incidence of cancer in 161 families affected by ataxia-telangiectasia. N Engl J Med 325:1831–1836

    Article  PubMed  CAS  Google Scholar 

  • Tavtigian SV, Simard J, Rommens J, Couch F, Shattuck-Eidens D, et al. (1996) The complete BRCA2 gene and mutations in chromosome 13q-linked kindreds. Nat Genet 12:333–337

    Article  PubMed  CAS  Google Scholar 

  • Teng DH, Bogden R, Mitchell J, Baumgard M, Bell R, et al. (1996) Low incidence of BRCA2 mutations in breast carcinoma and other cancers. Nat Genet 13:241–244

    Article  PubMed  CAS  Google Scholar 

  • Theodorou V, Kimm MA, Boer M, Wessels L, Theelen W, et al. (2007) MMTV insertional mutagenesis identifies genes, gene families and pathways involved in mammary cancer. Nat Genet 39:759–769

    Article  PubMed  CAS  Google Scholar 

  • Thompson HJ, Singh M (2000) Rat models of premalignant breast disease. J Mammary Gland Biol Neoplasia 5:409–420

    Article  PubMed  CAS  Google Scholar 

  • Tong WM, Yang YG, Cao WH, Galendo D, Frappart L, et al. (2007) Poly(ADP-ribose) polymerase-1 plays a role in suppressing mammary tumourigenesis in mice. Oncogene 26:3857–3867

    Article  PubMed  CAS  Google Scholar 

  • Turner N, Tutt A, Ashworth A (2004) Hallmarks of ‘BRCAness’ in sporadic cancers. Nat Rev Cancer 4:814–819

    Article  PubMed  CAS  Google Scholar 

  • Vadlamudi RK, Adam L, Wang RA, Mandal M, Nguyen D, et al. (2000) Regulatable expression of p21-activated kinase-1 promotes anchorage-independent growth and abnormal organization of mitotic spindles in human epithelial breast cancer cells. J Biol Chem 275:36238–36244

    Article  PubMed  CAS  Google Scholar 

  • Vahteristo P, Bartkova J, Eerola H, Syrjakoski K, Ojala S, et al. (2002) A CHEK2 genetic variant contributing to a substantial fraction of familial breast cancer. Am J Hum Genet 71:432–438

    Article  PubMed  CAS  Google Scholar 

  • Van de Vijver MJ, Nusse R (1991) The molecular biology of breast cancer. Biochim Biophys Acta 1072:33–50

    PubMed  Google Scholar 

  • van der Weyden L, Adams DJ, Bradley A (2002) Tools for targeted manipulation of the mouse genome. Physiol Genomics 11:133–164

    PubMed  Google Scholar 

  • Vogel HH Jr, Turner JE (1982) Genetic component in rat mammary carcinogenesis. Radiat Res 89:264–273

    Article  PubMed  Google Scholar 

  • Walsh T, King MC (2007) Ten genes for inherited breast cancer. Cancer Cell 11:103–105

    Article  PubMed  CAS  Google Scholar 

  • Wang RA, Zhang H, Balasenthil S, Medina D, Kumar R (2006) PAK1 hyperactivation is sufficient for mammary gland tumor formation. Oncogene 25:2931–2936

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Wyckoff JB, Goswami S, Wang Y, Sidani M, et al. (2007) Coordinated regulation of pathways for enhanced cell motility and chemotaxis is conserved in rat and mouse mammary tumors. Cancer Res 67:3505–3511

    Article  PubMed  CAS  Google Scholar 

  • Ward JM, Devor-Henneman DE (2004) Mouse models of human familial cancer syndromes. Toxicol Pathol 32 Suppl 1:90–98

    Article  PubMed  CAS  Google Scholar 

  • Welsch CW (1985) Host factors affecting the growth of carcinogen-induced rat mammary carcinomas: a review and tribute to Charles Brenton Huggins. Cancer Res 45:3415–3443

    PubMed  CAS  Google Scholar 

  • Wood GA, Korkola JE, Archer MC (2002) Tissue-specific resistance to cancer development in the rat: phenotypes of tumor-modifier genes. Carcinogenesis 23:1–9

    Article  PubMed  Google Scholar 

  • Wooster R, Bignell G, Lancaster J, Swift S, Seal S, et al. (1995) Identification of the breast cancer susceptibility gene BRCA2. Nature 378:789–792

    Article  PubMed  CAS  Google Scholar 

  • Xia B, Dorsman JC, Ameziane N, de Vries Y, Rooimans MA, et al. (2007) Fanconi anemia is associated with a defect in the BRCA2 partner PALB2. Nat Genet 39:159–161

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Crawford N, Lukes L, Finney R, Lancaster M, et al. (2005) Metastasis predictive signature profiles pre-exist in normal tissues. Clin Exp Metastasis 22:593–603

    Article  PubMed  CAS  Google Scholar 

  • Zan Y, Haag JD, Chen KS, Shepel LA, Wigington D, et al. (2003) Production of knockout rats using ENU mutagenesis and a yeast-based screening assay. Nat Biotechnol 21:645–651

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZX, Kumar V, Rivera RT, Pasion SG, Chisholm J, et al. (1989) Suppression of prolactin gene expression in GH cells correlates with site-specific DNA methylation. DNA 8:605–613

    Article  PubMed  CAS  Google Scholar 

  • Zuo T, Wang L, Morrison C, Chang X, Zhang H, et al. (2007) FOXP3 is an X-linked breast cancer suppressor gene and an important repressor of the HER-2/ErbB2 oncogene. Cell 129:1275–1286

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the reviewers for comments and suggestions that improved the article. Recent work done in the authors’ laboratory was supported by the Fund for Scientific Medical Research (FRSM, 3.4517.05), the Fund for Collective Fundamental Research (FRFC, 2.4565.04), the National Fund for Scientific Research (FNRS, Télévie, 7.4620.07 and 7.4530.06), and the FP6 programme EURATools. C. Szpirer is a research director of the FNRS (Belgium).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Szpirer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szpirer, C., Szpirer, J. Mammary cancer susceptibility: human genes and rodent models. Mamm Genome 18, 817–831 (2007). https://doi.org/10.1007/s00335-007-9073-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-007-9073-x

Keywords

Navigation