Skip to main content
Log in

Genetic loci that regulate healing and regeneration in LG/J and SM/J mice

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

MRL mice display unusual healing properties. When MRL ear pinnae are hole punched, the holes close completely without scarring, with regrowth of cartilage and reappearance of both hair follicles and sebaceous glands. Studies using (MRL/lpr × C57BL/6)F2 and backcross mice first showed that this phenomenon was genetically determined and that multiple loci contributed to this quantitative trait. The lpr mutation itself, however, was not one of them. In the present study we examined the genetic basis of healing in the Large (LG/J) mouse strain, a parent of the MRL mouse and a strain that shows the same healing phenotype. LG/J mice were crossed with Small (SM/J) mice and the F2 population was scored for healing and their genotypes determined at more than 200 polymorphic markers. As we previously observed for MRL and (MRL × B6)F2 mice, the wound-healing phenotype was sexually dimorphic, with female mice healing more quickly and more completely than male mice. We found quantitative trait loci (QTLs) on chromosomes (Chrs) 9, 10, 11, and 15. The heal QTLs on Chrs 11 and 15 were linked to differential healing primarily in male animals, whereas QTLs on Chrs 9 and 10 were not sexually dimorphic. A comparison of loci identified in previous crosses with those in the present report using LG/J × SM/J showed that loci on Chrs 9, 11, and 15 colocalized with those seen in previous MRL crosses, whereas the locus on Chr 10 was not seen before and is contributed by SM/J.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Armstrong JR, Ferguson MW (1995) Ontogeny of the skin and the transition from scar-free to scarring phenotype during wound healing in the pouch young of a marsupial, Monodelphis domestica. Dev Biol 169:242–260

    Article  PubMed  CAS  Google Scholar 

  • Blankenhorn EP, Troutman S, Clark LD, Zhang XM, Chen P et al (2003) Sexually dimorphic genes regulate healing and regeneration in MRL mice. Mamm Genome 14:250–260

    Article  PubMed  Google Scholar 

  • Burgess-Herbert SL, Cox A, Tsaih SW, Paigen B (2008) Practical applications of the bioinformatics toolbox for narrowing quantitative trait loci. Genetics 180:2227–2235

    Article  PubMed  Google Scholar 

  • Cheverud JM, Ehrich TH, Hrbek T, Kenney JP, Pletscher LS et al (2004) Quantitative trait loci for obesity- and diabetes-related traits and their dietary responses to high-fat feeding in LGXSM recombinant inbred mouse strains. Diabetes 53:3328–3336

    Article  PubMed  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Clark LD, Clark RK, Heber-Katz E (1998) A new murine model for mammalian wound repair and regeneration. Clin Immunol Immunopathol 88:35–45

    Article  PubMed  CAS  Google Scholar 

  • Delerive P, Monte D, Dubois G, Trottein F, Fruchart-Najib J et al (2001) The orphan nuclear receptor ROR alpha is a negative regulator of the inflammatory response. EMBO Rep 2:42–48

    Article  PubMed  CAS  Google Scholar 

  • Ehrich TH, Kenney JP, Vaughn TT, Pletscher LS, Cheverud JM (2003) Diet, obesity, and hyperglycemia in LG/J and SM/J mice. Obes Res 11:1400–1410

    Article  PubMed  CAS  Google Scholar 

  • Ehrich TH, Kenney-Hunt JP, Pletscher LS, Cheverud JM (2005) Genetic variation and correlation of dietary response in an advanced intercross mouse line produced from two divergent growth lines. Genet Res 85:211–222

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald J, Rich C, Burkhardt D, Allen J, Herzka AS et al (2008) Evidence for articular cartilage regeneration in MRL/MpJ mice. Osteoarthritis Cartilage 16:1319–1326

    Article  PubMed  CAS  Google Scholar 

  • Goodale H (1938) A study of the inheritance of body weight in the albino mouse by selection. J Hered 29:101–112

    Google Scholar 

  • Goss RJ, Grimes LN (1975) Epidermal downgrowths in regenerating rabbit ear holes. J Morphol 146:533–542

    Article  PubMed  CAS  Google Scholar 

  • Gourevitch D, Clark L, Chen P, Seitz A, Samulewicz SJ et al (2003) Matrix metalloproteinase activity correlates with blastema formation in the regenerating MRL mouse ear hole model. Dev Dyn 226:377–387

    Article  PubMed  CAS  Google Scholar 

  • Guenther C, Pantalena-Filho L, Kingsley DM (2008) Shaping skeletal growth by modular regulatory elements in the Bmp5 gene. PLoS Genet 4:e1000308

    Article  PubMed  CAS  Google Scholar 

  • Gunning P, O’Neill G, Hardeman E (2008) Tropomyosin-based regulation of the actin cytoskeleton in time and space. Physiol Rev 88:1–35

    Article  PubMed  CAS  Google Scholar 

  • Heber-Katz E, Chen P, Clark L, Zhang XM, Troutman S et al (2004) Regeneration in MRL mice: further genetic loci controlling the ear hole closure trait using MRL and M. m. castaneus mice. Wound Repair Regen 12:384–392

    Article  PubMed  Google Scholar 

  • Hopkinson-Woolley J, Hughes D, Gordon S, Martin P (1994) Macrophage recruitment during limb development and wound healing in the embryonic and foetal mouse. J Cell Sci 107(Pt 5):1159–1167

    PubMed  Google Scholar 

  • Hrbek T, de Brito RA, Wang B, Pletscher LS, Cheverud JM (2006) Genetic characterization of a new set of recombinant inbred lines (LGXSM) formed from the inter-cross of SM/J and LG/J inbred mouse strains. Mamm Genome 17:417–429

    Article  PubMed  CAS  Google Scholar 

  • Huang JD, Brady ST, Richards BW, Stenolen D, Resau JH et al (1999) Direct interaction of microtubule- and actin-based transport motors. Nature 397:267–270

    Article  PubMed  CAS  Google Scholar 

  • Kench JA, Russell DM, Fadok VA, Young SK, Worthen GS et al (1999) Aberrant wound healing and TGF-beta production in the autoimmune-prone MRL/+mouse. Clin Immunol 92:300–310

    Article  PubMed  CAS  Google Scholar 

  • Kramer MG, Vaughn TT, Pletscher LS, King-Ellison K, Adams E et al (1998) Genetic variation in body weight gain and composition in the intercross of Large (LG/J) and Small (SM/J) inbred strains of mice. Genet Mol Biol 21:211–218

    Article  Google Scholar 

  • Krendel M, Osterweil EK, Mooseker MS (2007) Myosin 1E interacts with synaptojanin-1 and dynamin and is involved in endocytosis. FEBS Lett 581:644–650

    Article  PubMed  CAS  Google Scholar 

  • Li XM, Gu WK, Masinde G, Hamilton-Ulland M, Xu SZ et al (2001) Genetic control of the rate of wound healing in mice. Heredity 86:668–674

    Article  PubMed  CAS  Google Scholar 

  • MacArthur J (1944) Genetics of body size and related characters. I. Selection of small and large races of the laboratory mouse. Am Nat 78:142–157

    Article  Google Scholar 

  • Maden M, Ong DE, Summerbell D, Chytil F (1989) The role of retinoid-binding proteins in the generation of pattern in the developing limb, the regenerating limb and the nervous system. Development 107(Suppl):109–119

    PubMed  CAS  Google Scholar 

  • Manenti G, Galvan A, Pettinicchio A, Trincucci G, Spada E et al (2009) Mouse genome-wide association mapping needs linkage analysis to avoid false-positive loci. PLoS Genet 5:e1000331

    Article  PubMed  CAS  Google Scholar 

  • Manly KF, Olson JM (1999) Overview of QTL mapping software and introduction to map manager QT. Mamm Genome 10:327–334

    Article  PubMed  CAS  Google Scholar 

  • Masinde GL, Li X, Gu W, Davidson H, Mohan S et al (2001) Identification of wound healing/regeneration quantitative trait loci (QTL) at multiple time points that explain seventy percent of variance in (MRL/MpJ and SJL/J) mice F2 population. Genome Res 11:2027–2033

    Article  PubMed  CAS  Google Scholar 

  • McBrearty BA, Clark LD, Zhang XM, Blankenhorn EP, Heber-Katz E (1998) Genetic analysis of a mammalian wound-healing trait. Proc Natl Acad Sci USA 95:11792–11797

    Article  PubMed  CAS  Google Scholar 

  • Murphy ER, Roths JB (1978) Autoimmunity and lymphoproliferation: induction by mutant gene Lpr, and acceleration by a male-associated factor in strain BXSB mice. Elsevier North Holland, New York

    Google Scholar 

  • Nakamura T, Takeuchi K, Muraoka S, Takezoe H, Takahashi N et al (1999) A neurally enriched coronin-like protein, ClipinC, is a novel candidate for an actin cytoskeleton-cortical membrane-linking protein. J Biol Chem 274:13322–13327

    Article  PubMed  CAS  Google Scholar 

  • Norgard EA, Jarvis JP, Roseman CC, Maxwell TJ, Kenney-Hunt JP et al (2009) Replication of long-bone length QTL in the F9–F10 LG, SM advanced intercross. Mamm Genome 20:224–235

    Article  PubMed  CAS  Google Scholar 

  • Reber-Muller S, Streitwolf-Engel R, Yanze N, Schmid V, Stierwald M et al (2006) BMP2/4 and BMP5–8 in jellyfish development and transdifferentiation. Int J Dev Biol 50:377–384

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez OC, Cheney RE (2002) Human myosin-Vc is a novel class V myosin expressed in epithelial cells. J Cell Sci 115:991–1004

    PubMed  CAS  Google Scholar 

  • Rodriguez OC, Schaefer AW, Mandato CA, Forscher P, Bement WM et al (2003) Conserved microtubule-actin interactions in cell movement and morphogenesis. Nat Cell Biol 5:599–609

    Article  PubMed  CAS  Google Scholar 

  • Roesch A, Becker B, Schneider-Brachert W, Hagen I, Landthaler M et al (2006) Re-expression of the retinoblastoma-binding protein 2-homolog 1 reveals tumor-suppressive functions in highly metastatic melanoma cells. J Invest Dermatol 126:1850–1859

    Article  PubMed  CAS  Google Scholar 

  • Stocum DL (1984) The urodele limb regeneration blastema. Determination and organization of the morphogenetic field. Differentiation 27:13–28

    Article  PubMed  CAS  Google Scholar 

  • Ulrich MM, Verkerk M, Reijnen L, Vlig M, van den Bogaerdt AJ et al (2007) Expression profile of proteins involved in scar formation in the healing process of full-thickness excisional wounds in the porcine model. Wound Repair Regen 15:482–490

    Article  PubMed  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2009) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC

    Google Scholar 

  • Woods A, James CG, Wang G, Dupuis H, Beier F (2009) Control of chondrocyte gene expression by actin dynamics: a novel role of cholesterol/roralpha signaling in endochondral bone growth. J Cell Mol Med

  • Yu H, Mohan S, Masinde GL, Baylink DJ (2005) Mapping the dominant wound healing and soft tissue regeneration QTL in MRL × CAST. Mamm Genome 16:918–924

    Article  PubMed  CAS  Google Scholar 

  • Yu H, Baylink DJ, Masinde GL, Li R, Nguyen B et al (2007) Mouse chromosome 9 quantitative trait loci for soft tissue regeneration: congenic analysis and fine mapping. Wound Repair Regen 15:922–927

    Article  PubMed  Google Scholar 

  • Zeng ZB (1993) Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci USA 90:10972–10976

    Article  PubMed  CAS  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

  • Zhao P, Hoffman EP (2004) Embryonic myogenesis pathways in muscle regeneration. Dev Dyn 229:380–392

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from NIH, NIGMS GM073226, a grant from the Commonwealth of Pennsylvania Universal Research Enrichment Program, and an NCI Cancer Center Grant (P30 CA10815) to the Wistar Institute. This study was also supported by the Genomics and Animal Wistar Core Facilities. We thank Abhishek Kulkarni for his help in the linkage analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elizabeth P. Blankenhorn or Ellen Heber-Katz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 1000 kb)

(DOC 63 kb)

(TIFF 243 kb)

(TIFF 221 kb)

(DOC 45 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blankenhorn, E.P., Bryan, G., Kossenkov, A.V. et al. Genetic loci that regulate healing and regeneration in LG/J and SM/J mice. Mamm Genome 20, 720–733 (2009). https://doi.org/10.1007/s00335-009-9216-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-009-9216-3

Keywords

Navigation