Skip to main content
Log in

Recommended nomenclature for five mammalian carboxylesterase gene families: human, mouse, and rat genes and proteins

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Mammalian carboxylesterase (CES or Ces) genes encode enzymes that participate in xenobiotic, drug, and lipid metabolism in the body and are members of at least five gene families. Tandem duplications have added more genes for some families, particularly for mouse and rat genomes, which has caused confusion in naming rodent Ces genes. This article describes a new nomenclature system for human, mouse, and rat carboxylesterase genes that identifies homolog gene families and allocates a unique name for each gene. The guidelines of human, mouse, and rat gene nomenclature committees were followed and “CES” (human) and “Ces” (mouse and rat) root symbols were used followed by the family number (e.g., human CES1). Where multiple genes were identified for a family or where a clash occurred with an existing gene name, a letter was added (e.g., human CES4A; mouse and rat Ces1a) that reflected gene relatedness among rodent species (e.g., mouse and rat Ces1a). Pseudogenes were named by adding “P” and a number to the human gene name (e.g., human CES1P1) or by using a new letter followed by ps for mouse and rat Ces pseudogenes (e.g., Ces2d-ps). Gene transcript isoforms were named by adding the GenBank accession ID to the gene symbol (e.g., human CES1_AB119995 or mouse Ces1e_BC019208). This nomenclature improves our understanding of human, mouse, and rat CES/Ces gene families and facilitates research into the structure, function, and evolution of these gene families. It also serves as a model for naming CES genes from other mammalian species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aida K, Moore R, Negishi M (1993) Cloning and nucleotide sequence of a novel, male-predominant carboxylesterase in mouse liver. Biochim Biophys Acta 1174:72–74

    CAS  PubMed  Google Scholar 

  • Barthel BL, Torres RC, Hyatt JL, Edwards CC, Hatfield MJ et al (2008) Identification of human intestinal carboxylesterase as the primary enzyme for activation of a doxazoline carbamate prodrug. J Med Chem 51:298–304

    Article  CAS  PubMed  Google Scholar 

  • Becker A, Bottcher A, Lackner KJ, Fehringer P, Notka F et al (1994) Purification, cloning and expression of a human enzyme with acyl coenzyme A: cholesterol acyltransferase activity, which is identical to liver carboxylesterase. Arterioscler Thromb 14:1346–1355

    CAS  PubMed  Google Scholar 

  • Bencharit S, Morton CL, Xue Y, Potter PM, Redinbo MR (2003) Structural basis of heroin and cocaine metabolism by a promiscuous human drug-processing enzyme. Nat Struct Biol 10:349–356

    Article  CAS  PubMed  Google Scholar 

  • Bencharit S, Edwards CC, Morton CL, Howard-Williams EL, Kuhn P et al (2006) Multisite promiscuity in the processing of endogenous substrates by human carboxylesterase 1. J Mol Biol 363:201–214

    Article  CAS  PubMed  Google Scholar 

  • Berning W, De Looze SM, von Deimling O (1985) Identification and development of a genetically closely linked carboxylesterase gene family of the mouse liver. Comp Biochem Physiol 80:859–865

    Article  CAS  Google Scholar 

  • Cygler M, Schrag JD, Sussman JL, Harel M, Silman I et al (1993) Relationship between sequence conservation and three-dimensional structure in a large family of esterases, lipases and related proteins. Protein Sci 2:366–382

    Article  CAS  PubMed  Google Scholar 

  • Diczfalusy MA, Bjorkkem I, Einarsson C, Hillebrant CG, Alexson SE (2001) Characterization of enzymes involved in formation of ethyl esters of long-chain fatty acids. J Lipid Res 42:1025–1032

    CAS  PubMed  Google Scholar 

  • Dolinsky VW, Sipione S, Lehner R, Vance DE (2001) The cloning and expression of murine triacylglycerol hydrolase cDNA and the structure of the corresponding gene. Biochim Biophys Acta 1532:162–172

    CAS  PubMed  Google Scholar 

  • Donoghue PCJ, Benton MJ (2007) Rocks and clocks: calibrating the tree of life using fossils and molecules. Trends Genet 22:424–630

    Google Scholar 

  • Ecroyd H, Belghazi M, Dacheux JL, Miyazaki M, Yamashita T et al (2006) An epididymal form of cauxin, a carboxylesterase-like enzyme, is present and active in mammalian male reproductive fluids. Biol Reprod 74:439–447

    Article  CAS  PubMed  Google Scholar 

  • Ellingham P, Seedorf U, Assmann G (1998) Cloning and sequencing of a novel murine liver carboxylesterase cDNA. Biochim Biophys Acta 1397:175–179

    Google Scholar 

  • Fleming CD, Bencharit S, Edwards CC, Hyatt JL, Tsurkan L et al (2005) Structural insights into drug processing by human carboxylesterase 1: tamoxifen, Mevastatin, and inhibition by Benzil. J Mol Biol 352:165–177

    Article  CAS  PubMed  Google Scholar 

  • Fukami T, Nakajima M, Maruichi T, Takahashi S, Takamiya M et al (2008) Structure and characterization of human carboxylesterase 1A1, 1A2 and 1A3 genes. Pharm Genomics 18:911–920

    Article  CAS  Google Scholar 

  • Furihata T, Hosokawa M, Nakata F, Satoh T, Chiba K (2003) Purification, molecular cloning, and functional expression of inducible liver acylcarnitine hydrolase in C57BL/6 mouse, belonging to the carboxylesterase multigene family. Arch Biochem Biophys 416:101–109

    Article  CAS  PubMed  Google Scholar 

  • Genetta TL, D’Eustachio P, Kadner SS, Finlay TH (1988) cDNA cloning of esterase 1, the major esterase activity in mouse plasma. Biochem Biophys Res Commun 151:1364–1370

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S (2000) Cholesteryl ester hydrolase in human monocyte/macrophage: cloning, sequencing and expression of full-length cDNA. Physiol Genomics 2:1–8

    CAS  PubMed  Google Scholar 

  • Ghosh S, Mallonee DH, Grogan WM (1995) Molecular cloning and expression of rat hepatic neutral cholesteryl ester hydrolase. Biochim Biophys Acta 1259:305–312

    PubMed  Google Scholar 

  • Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ et al (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428:493–521

    Article  CAS  PubMed  Google Scholar 

  • Gilham D, Alam M, Gao W, Vance DE, Lehner R (2005) Triacylglycerol hydrolase is localized to the endoplasmic reticulum by an unusual retrieval sequence where it participates in VLDL assembly without utilizing VLDL lipids as substrates. Mol Biol Cell 16:984–996

    Article  CAS  PubMed  Google Scholar 

  • Hemmert AC, Otto TC, Wierdl M, Edwards CC, Fleming CD et al (2010) Human carboxylesterase 1 stereoselectively binds the nerve agent cyclosarin and spontaneously hydrolyzes the nerve agent sarin. Mol Pharmacol 77:508–516

    Article  CAS  PubMed  Google Scholar 

  • Holmes RS, Cox LA, VandeBerg JL (2008a) Mammalian carboxylesterase 5: comparative biochemistry and genomics. Comp Biochem Physiol D Genomics Proteomics 3:195–204

    Article  Google Scholar 

  • Holmes RS, Chan J, Cox LA, Murphy WJ, VandeBerg JL (2008b) Opossum carboxylesterases: sequences, phylogeny and evidence for CES duplication events predating the marsupial-eutherian common ancestor. BMC Evol Biol 8:54

    Article  PubMed  Google Scholar 

  • Holmes RS, VandeBerg JL, Cox LA (2009a) A new class of mammalian carboxylesterase CES6. Comp Biochem Physiol Part D Genomics Proteomics 4:209–217

    Article  PubMed  Google Scholar 

  • Holmes RS, Glenn JP, VandeBerg JL, Cox LA (2009b) Baboon carboxylesterases 1 and 2: sequences, structures and phylogenetic relationships with human and other primate carboxylesterases. J Med Primatol 38:27–38

    Article  CAS  PubMed  Google Scholar 

  • Holmes RS, Cox LA, VandeBerg JL (2009c) Horse carboxylesterases: evidence for six CES1 and four families of CES genes on chromosome 3. Comp Biochem Physiol 4:54–65

    Google Scholar 

  • Holmes RS, Cox LA, VandeBerg JL (2010) Mammalian carboxylesterase 3: comparative genomics and proteomics. Genetica 138(7):695–708

    Article  CAS  PubMed  Google Scholar 

  • Hosokawa M (2008) Structure and catalytic properties of carboxylesterase isozymes involved in metabolic activation of prodrugs. Molecules 13:412–431

    Article  CAS  PubMed  Google Scholar 

  • Hosokawa M, Furihata T, Yaginuma Y, Yamamoto N, Kayano N et al (2007) Genomic structure and transcriptional regulation of the rat, mouse and human carboxylesterase genes. Drug Metab Rev 39:1–15

    Article  CAS  PubMed  Google Scholar 

  • Hosokawa M, Furihata T, Yaginuma Y, Yamamoto N, Watanabe N et al (2008) Structural organization and characterization of the regulatory element of the human carboxylesterase (CES1A1 and CES1A2) genes. Drug Metab Pharmacokinet 23:73–84

    Article  CAS  PubMed  Google Scholar 

  • Humerickhouse R, Lohrbach K, Li L, Bosron WF, Dolan ME (2000) Characterization of CPT-11 hydrolysis by human liver carboxylesterase isoforms h-CE1 and hCE-2. Cancer Res 60:1189–1192

    CAS  PubMed  Google Scholar 

  • Imai T (2006) Human carboxylesterase isozymes: catalytic properties and rational drug design. Drug Metab Pharmacokinet 21:173–185

    Article  CAS  PubMed  Google Scholar 

  • Imai T, Yoshigae Y, Hosokawa M, Chiba K, Otagiri M (2003) Evidence for the involvement of a pulmonary first-pass effect via carboxylesterase in the disposition of a propanolol ester derivative after intravenous administration. J Pharmacol Exp Ther 307:1234–1242

    Article  CAS  PubMed  Google Scholar 

  • Ko KW, Erickson B, Lehner R (2009) Es-x/Ces1 prevents triacylglycerol accumulation in McArdle-RH7777 hepatocytes. Biochim Biophys Acta 1791:1133–1143

    CAS  PubMed  Google Scholar 

  • Krishnasamy R, Teng AL, Dhand R, Schultz RM, Gross NJ (1998) Molecular cloning, characterization and differential expression pattern of mouse lung surfactant convertase. Am J Physiol Lung Mol Cell Biol 275:L969–L975

    CAS  Google Scholar 

  • Kroetz DL, McBride OW, Gonzalez FJ (1993) Glycosylation-dependent activity of Baculovirus-expressed human liver carboxylesterases: cDNA cloning and characterization of two highly similar enzyme forms. Biochemistry 32:11606–11617

    Article  CAS  PubMed  Google Scholar 

  • Langmann T, Becker A, Aslanidis C, Notka F, Ulrich H et al (1997) Structural organization and characterization of the promoter region of a human carboxylesterase gene. Biochim Biophys Acta 1350:65–74

    CAS  PubMed  Google Scholar 

  • Lehner R, Vance DE (1999) Cloning and expression of a cDNA encoding a hepatic microsomal lipase that mobilizes stored triacylglycerol. Biochem J 343:1–10

    Article  CAS  PubMed  Google Scholar 

  • Leinweber FJ (1987) Possible physiological roles of carboxyl ester hydrolases. Drug Metab Rev 18:379–439

    Article  CAS  PubMed  Google Scholar 

  • Linke T, Dawson H, Harrison EH (2005) Isolation and characterization of a microsomal retinyl ester hydrolase. J Biol Chem 280:23287–23294

    Article  CAS  PubMed  Google Scholar 

  • Lockridge O, Adkins S, La Due BN (1987) Location of disulfide bonds within the sequence of human serum cholinesterase. J Biol Chem 262:12945–12952

    CAS  PubMed  Google Scholar 

  • Marsh S, Xiao M, Yu J, Ahluwalia R, Minton M et al (2004) Pharmacogenomic assessment of carboxylesterases 1 and 2. Genomics 84:661–668

    Article  CAS  PubMed  Google Scholar 

  • Masaki K, Hashimoto M, Imai T (2007) Intestinal first-pass metabolism via carboxylesterase in rat jejunum and intestine. Drug Metab Dispos 35:1089–1095

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki M, Kamiie K, Soeta S, Taira H, Yamashita T (2003) Molecular cloning and characterization of a novel carboxylesterase-like protein that is physiologically present at high concentrations in the urine of domestic cats (Felis catus). Biochem J 370:101–110

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki M, Yamashita T, Suzuki Y, Saito Y, Soeta S et al (2006) A major urinary protein of the domestic cat regulates the production of felinine, a putative pheromone precursor. Chem Biol 13:1070–1079

    Article  Google Scholar 

  • Morton CL, Iacono L, Hyatt JL, Taylor KR, Cheshire PJ et al (2005) Activation and antitumor activity of CPT-11 in plasma esterase-deficient mice. Cancer Chemother Pharmacol 56:629–636

    Article  CAS  PubMed  Google Scholar 

  • Munger JS, Shi GP, Mark EA, Chin DT, Gerard C et al (1991) A serine esterase released by human alveolar macrophages is closely related to liver microsomal carboxylesterases. J Biol Chem 266:18832–18838

    CAS  PubMed  Google Scholar 

  • Mutch E, Nave R, McCracken N, Zech K, Williams FM (2007) The role of esterases in the metabolism of ciclesinide to deisobutyrl-ciclesonide in human tissue. Biochem Pharmacol 73:1657–1664

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuka H, Inoue S, Kameyama M (2003) Intracellular conversion of irinotecan to its active form, SN-38, by native carboxylesterase in human non-small cell lung cancer. Lung Cancer 41:87–198

    Article  Google Scholar 

  • Okazaki H, Igarashi M, Nishi M, Tajima M, Sekiya M et al (2006) Identification of a novel member of the carboxylesterase family that hydrolyzes triacylglycerol. A potential role in adipocyte lipolysis. Diabetes 55:2091–2097

    Article  CAS  PubMed  Google Scholar 

  • Okazaki H, Igarashi M, Nishi M, Sekiya M, Tajima M et al (2008) Identification of neutral cholesterol hydrolase, a key enzyme removing cholesterol from macrophages. J Biol Chem 283:33357–33364

    Article  CAS  PubMed  Google Scholar 

  • Ovnic M, Swank RT, Fletcher C, Zhen L, Novak EK et al (1991) Characterization and functional expression of a cDNA encoding egasyn (esterase-22): the endoplasmic reticulum-targeting protein of beta-glucuronidase. Genomics 11:956–967

    Article  CAS  PubMed  Google Scholar 

  • Pindel EV, Kedishvili NY, Abraham TL, Brezinski MR, Zhang A et al (1997) Purification and cloning of a broad substrate specificity human liver carboxylesterase that catalyzes the hydrolysis of cocaine and heroin. J Biol Chem 272:14769–14775

    Article  CAS  PubMed  Google Scholar 

  • Potter PM, Wolverton JS, Morton CL, Wierdl M, Danks MK (1998) Cellular localization domains of a rabbit and human carboxylesterase: influence on irinotecan (CPT-11) metabolism by the rabbit enzyme. Cancer Res 58:3627–3632

    CAS  PubMed  Google Scholar 

  • Redinbo MR, Potter PM (2005) Mammalian carboxylesterases: from drug targets to protein therapeutics. Drug Discov Today 10:313–320

    Article  CAS  PubMed  Google Scholar 

  • Rhead B, Karolchik D, Kuhn RM, Hinrichs AS, Zweig AS et al (2010) The UCSC Genome Browser database: update 2010. Nucl Acids Res 38:D613–D619

    Article  CAS  PubMed  Google Scholar 

  • Robbi M, Beaufay H (1983) Purification and characterization of various esterases from rat liver. Eur J Biochem 137:293–301

    Article  Google Scholar 

  • Robbi M, Beaufay H (1994) Cloning and sequencing of rat liver carboxylesterase ES-3 (egasyn). Biochem Biophys Res Commun 203:1404–1411

    Article  CAS  PubMed  Google Scholar 

  • Robbi M, Beaufay H, Octave JN (1990) Nucleotide sequence of cDNA coding for rat liver pI 6.1 esterase (ES-10), a carboxylesterase located in the lumen of the endoplasmic reticulum. Biochem J 269:451–458

    CAS  PubMed  Google Scholar 

  • Ruppert C, Bagheri A, Markart P, Schmidt R, Seegar W et al (2006) Liver carboxylesterase cleaves surfactant protein (SP-B) and promotes surfactant subtype conversion. Biochem Biophys Res Commun 348:1449–1454

    Article  CAS  PubMed  Google Scholar 

  • Sanghani SP, Davis WI, Dumaual NG, Mahrenholz A, Bosron WF (2002) Identification of microsomal rat liver carboxylesterases and their activity with retinyl palmitate. Eur J Biochem 269:4387–4398

    Article  CAS  PubMed  Google Scholar 

  • Sanghani SP, Quinney SK, Fredenberg TB, Davis WI, Murray DJ et al (2004) Hydrolysis of irinotecan and its oxidative metabolites, 7-ethyl-10-[4-N(5-aminopentanoic acid)-1-piperidino] carbonyloxycampothecin and 7-ethyl-10-[4-(1-piperidino)-1 amino]-carbonyloxycamptothecin, by human carboxylesterases CES1A1, CES2, and a newly expressed carboxylesterase isoenzyme, CES3. Drug Metab Dispos 32:505–511

    Article  CAS  PubMed  Google Scholar 

  • Satoh T, Hosokawa M (1995) Molecular aspects of carboxylesterase isoforms in comparison with other esterases. Toxicol Letters 82–83:439–445

    Article  Google Scholar 

  • Satoh T, Hosokawa M (1998) The mammalian carboxylesterases: from molecules to functions. Ann Rev Pharmacol Toxicol 38:257–288

    Article  CAS  Google Scholar 

  • Satoh T, Hosokawa M (2006) Structure, function and regulation of carboxylesterases. Chem Biol Interact 162:195–211

    Article  CAS  PubMed  Google Scholar 

  • Satoh T, Taylor P, Bosron WF, Sanghani P, Hosokawa M et al (2002) Current progress on esterases: from molecular structure to function. Drug Metab Dispos 30:488–493

    Article  CAS  PubMed  Google Scholar 

  • Schewer H, Langmann T, Daig R, Becker A, Aslandis C et al (1997) Molecular cloning and characterization of a novel putative carboxylesterase, present in human intestine and liver. Biochem Biophys Res Commun 233:117–120

    Article  Google Scholar 

  • Schreiber R, Taschler U, Wolinski H, Seper A, Tamegger SN et al (2009) Esterase 22 and beta-glucuronidase hydrolyze retinoids in mouse liver. J Lipid Res 50:2514–2523

    Article  CAS  PubMed  Google Scholar 

  • Shibita F, Takagi Y, Kitajima M, Kuroda T, Omura T (1993) Molecular cloning and characterization of a human carboxylesterase gene. Genomics 17:76–82

    Article  Google Scholar 

  • Sun Z, Murry DJ, Sanghani SP, Davis WI, Kedishvilli NY et al (2004) Methylphenadate is stereoselectively hydrolyzed by human carboxylesterase CES1A1. J Pharmcol Exp Ther 310:469–476

    Article  CAS  Google Scholar 

  • Takai S, Matsuda A, Usami Y, Adachi T, Sugiyama T et al (1997) Hydrolytic profile for ester- or amide-linkage by carboxylesterases pI 5.3 and 4.5 from human liver. Biol Pharm Bull 20:869–873

    CAS  PubMed  Google Scholar 

  • Taketani M, Shii M, Ohura K, Ninomiya S, Imai T (2007) Carboxylesterase in the liver and small intestine of experimental animals and human. Life Sci 81:924–932

    Article  CAS  PubMed  Google Scholar 

  • Tanimoto K, Kaneyasu M, Shimokuni T, Hiyama K, Nishiyama M (2007) Human carboxylesterase 1A2 expressed from carboxylesterase 1A1 and 1A2 genes is a potent predictor of CPT-11 cytotoxicity in vitro. Pharm Genomics 17:1–10

    Article  CAS  Google Scholar 

  • The MGC Project Team (2004) The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res 14:2121–2127

    Article  Google Scholar 

  • Thierry-Mieg D, Thierry-Mieg J (2006) AceView: a comprehensive cDNA-supported gene and transcripts annotation. Genome Biol 7 (Suppl 1):S12-S14

    Google Scholar 

  • Tsujita T, Okuda H (1993) Palmitoyl-coenzyme A hydrolyzing activity in rat kidney and its relationship with carboxylesterase. J Lipid Res 34:1773–1781

    CAS  PubMed  Google Scholar 

  • Vanlith HA, Haller M, Vanhoof IJM, Vanderwouw MJA, Vanzutphen BFM et al (1993) Characterization of rat plasma esterase ES-1A concerning its molecular and catalytic properties. Arch Biochem Biophys 301:265–274

    Article  CAS  Google Scholar 

  • Vistoli G, Pedretti A, Mazzolari A, Testa B (2010) Homology modelling and metabolism prediction of human carboxylesterase-2 using docking analyses by GriDock: a parallelized tool based on AutoDock 4.0. J Comput Aided Mol Des 24(9):771-787

    Google Scholar 

  • von Heijne G (1983) Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem 133:17–21

    Article  Google Scholar 

  • Wang H, Gilham D, Lehner R (2007) Proteomic and lipid characterization of apo-lipoprotein B-free luminal lipid droplets from mouse liver microsomes: implications for very low density lipoprotein assembly. J Biol Chem 282:33218–33226

    Article  CAS  PubMed  Google Scholar 

  • Williams ET, Wang H, Wrighton SA, Qian YW, Perkins EJ (2010) Genomic analysis of the carboxylesterases: identification and classification of novel forms. Mol Phylogenet Evol 57(1):23–34

    Article  CAS  PubMed  Google Scholar 

  • Woodburne MO, Rich TH, Springer MS (2003) The evolution of tribospheny and the antiquity of mammalian clades. Mol Phylogenet Evol 28:360–385

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Zhang W, Ma MK, MacLeod HL (2002) Human carboxylesterase 2 is commonly expressed in tumor tissue and is correlated with the activation of irinotecan. Clin Cancer Res 8:2605–2611

    CAS  PubMed  Google Scholar 

  • Yan B, Matoney L, Yang D (1999) Human carboxylesterases in term placenta: enzymatic characterization, molecular cloning and evidence for the existence of multiple forms. Placenta 20:517–525

    Article  Google Scholar 

  • Yoshimura M, Kimura T, Ishii M, Ishii K, Matsuura T et al (2008) Functional polymorphisms in carboxylesterase1A2 (CES1A2) gene involves specific protein 1 (Sp1) binding sites. Biochem Biophys Res Commun 369:939–942

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Hu Z, Zhu C, Liu Q, Zhou Y et al (2009) Identification and characterization of an epididymis-specific gene, Ces7. Acta Biochim Biophys Sin 41:809–815

    Article  CAS  PubMed  Google Scholar 

  • Zhen L, Rusiniak ME, Swank RT (1995) The beta-glucuronidase propeptide contains a serpin-related octamer necessary for complex formation with egasyn esterase and for retention within the endoplasmic reticulum. J Biol Chem 270:11912–11920

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by NIH Grants P01 HL028972 and P51 RR013986 (to LAC); R01 ES07965 (to BY); and CA108775, and a Cancer Center Core Grant CA21765, the American Lebanese and Syrian Associated Charities (ALSAC) and St. Jude Children’s Research Hospital (SJCRH) (to PMP); and a program project grant HG000330 entitled ‘Mouse Genome Informatics’ from the National Human Genome Research Institute of the NIH (to LJM). Acknowledgement is also given to members of the Redinbo laboratory and NIH grants CA98468 and NS58089 (to MRR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger S. Holmes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holmes, R.S., Wright, M.W., Laulederkind, S.J.F. et al. Recommended nomenclature for five mammalian carboxylesterase gene families: human, mouse, and rat genes and proteins. Mamm Genome 21, 427–441 (2010). https://doi.org/10.1007/s00335-010-9284-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-010-9284-4

Keywords

Navigation