Skip to main content

Advertisement

Log in

Highly restricted gene flow and deep evolutionary lineages in the giant clam Tridacna maxima

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

The tropical Indo-West Pacific is the biogeographic region with the highest diversity of marine shallow water species, with its centre in the Indo-Malay Archipelago. However, due to its high endemism, the Red Sea is also considered as an important centre of evolution. Currently, not much is known about exchange among the Red Sea, Indian Ocean and West Pacific, as well as connectivity within the Indo-Malay Archipelago, even though such information is important to illuminate ecological and evolutionary processes that shape marine biodiversity in these regions. In addition, the inference of connectivity among populations is important for conservation. This study aims to test the hypothesis that the Indo-Malay Archipelago and the Red Sea are important centres of evolution by studying the genetic population structure of the giant clam Tridacna maxima. This study is based on a 484-bp fragment of the cytochrome c oxidase I gene from 211 individuals collected at 14 localities in the Indo-West Pacific to infer lineage diversification and gene flow as a measure for connectivity. The analysis showed a significant genetic differentiation among sample sites in the Indo-West Pacific (Φst = 0.74, P < 0.001) and across the Indo-Malay Archipelago (Φst = 0.72, P < 0.001), indicating restricted gene flow. Hierarchical AMOVA revealed the highest fixation index (Φct = 0.8, P < 0.001) when sample sites were assigned to the following regions: (1) Red Sea, (2) Indian Ocean and Java Sea, (3) Indonesian throughflow and seas in the East of Sulawesi, and (4) Western Pacific. Geological history as well as oceanography are important factors that shape the genetic structure of T. maxima in the Indo-Malay Archipelago and Red Sea. The observed deep evolutionary lineages might include cryptic species and this result supports the notion that the Indo-Malay Archipelago and the Red Sea are important centres of evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alvarado Bremer JR, Stequert B, Robertson NW, Ely B (1998) Genetic evidence for inter-oceanic subdivision of bigeye tuna (Thunnus obesus Lowe) populations. Mar Biol 132:547–557

    Article  Google Scholar 

  • Arnaud S, Bonhomme F, Borsa P (1999) Mitochondrial DNA analysis of the genetic relationships among populations of scads mackerel (Decapterus macarellus, D. macrosoma, and D. russelli) in South-East Asia. Mar Biol 135:699–707

    Article  CAS  Google Scholar 

  • Ashworth JS, Ormond RFG, Sturrock HT (2004) Effects of reef-top gathering and fishing on invertebrate abundance across take and no-take zones. J Exp Mar Biol Ecol 303:221–242

    Article  Google Scholar 

  • Ayala FJ, Hedgecock D, Zumwalt GS, Valentine JW (1973) Genetic variation in Tridacna maxima, an ecological analog of some unsuccessful evolutionary lineages. Evolution 27:177–191

    Article  Google Scholar 

  • Barber PH, Palumbi SR, Erdmann MV, Moosa MK (2002) Sharp genetic breaks among populations of Haptosquilla pulchella (Stomatopoda) indicate limits to larval transport:patterns, causes and consequences. Mol Ecol 11:659–674

    Article  PubMed  CAS  Google Scholar 

  • Barber PH, Erdmann MV, Palumbi SR (2006) Comparative phylogeography of three codistributed stomatopods:origins and timing of regional lineage diversification in the coral triangle. Evolution 60:1825–1839

    PubMed  Google Scholar 

  • Benzie JAH (1999) Major genetic differences between crown-of-thorns starfish (Acanthaster planci) populations in the Indian and Pacific Oceans. Evolution 53:1782–1795

    Article  CAS  Google Scholar 

  • Benzie JAH, Williams ST (1992a) Genetic structure of giant clam (Tridacna maxima) populations from reefs in the Western Coral Sea. Coral Reefs 11:135–141

    Article  Google Scholar 

  • Benzie JAH, Williams ST (1992b) No genetic differentiation of giant clam (Tridacna gigas) populations in the Great Barrier Reef, Australia. Mar Biol 112:1–5

    Article  Google Scholar 

  • Benzie JAH, Williams ST (1995) Gene flow among giant clam (Tridacna gigas) populations in Pacific does not parallel ocean circulation. Mar Biol 123:781–787

    Article  Google Scholar 

  • Benzie JAH, Williams ST (1997) Genetic structure of giant clam (Tridacna maxima) populations in the west Pacific is not consistent with dispersal by present-day ocean currents. Evolution 51:768–783

    Article  Google Scholar 

  • Benzie JAH, Ballment E, Forbes AT, Demetriades NT, Sugama K, Haryanti Moria S (2002) Mitochondrial DNA variation in Indo-Pacific populations of the tiger prawn, Peneus monodon. Mol Ecol 11:2553–2569

    Article  PubMed  CAS  Google Scholar 

  • Borsa P (2003) Genetic structure of round scad mackerel Decapterus macrosoma (Carangidae) in the Indo-Malay Archipelago. Mar Biol 142:575–581

    CAS  Google Scholar 

  • Briggs JC (1999) Coincident biogeographic patterns: Indo-West Pacific Ocean. Evolution 53:326–335

    Article  Google Scholar 

  • Campbell CA, Valentine JW, Ayala FJ (1975) High genetic variability in a population of Tridacna maxima from the Great Barrier Reef. Mar Biol 33:341–345

    Article  Google Scholar 

  • Chenoweth SF, Hughes JM (2003) Oceanic interchange and nonequilibrium population structure in the estuarine dependent Indo-Pacific tasselfish, Polynemus sheridani. Mol Ecol 12:2387–2397

    Article  PubMed  Google Scholar 

  • Chenoweth SF, Hughes JM, Keenan CP, Lavery S (1998) When oceans meet:a teleost shows secondary integration at an Indian-Pacific interface. Proc R Soc Lond B Biol Sci 265:415–420

    Article  Google Scholar 

  • Chow S, Okamoto H, Uozumi Y, Takeuchi Y, Takeyama H (1997) Genetic stock structure of the swordfish (Xiphias gladius) inferred by PCR-RFLP analysis of the mitochondrial DNA control region. Mar Biol 127:359–367

    Article  Google Scholar 

  • Chow S, Okamoto H, Miyabe N, Hiramatsu K, Barut N (2000) Genetic divergence between Atlantic and Indo-Pacific stocks of bigeye tuna (Thunnus obesus) and admixture around South Africa. Mol Ecol 9:221–227

    Article  PubMed  CAS  Google Scholar 

  • Crandall ED, Frey MA, Grosberg RK, Barber PH (2008) Contrasting demographic history and phylogeographical patterns in two Indo-Pacific gastropods. Mol Ecol 17:611–626

    Article  PubMed  Google Scholar 

  • Dayrat B (2005) Towards integrative taxonomy. Biol J Linn Soc 85:407–415

    Article  Google Scholar 

  • De Boer TS, Subia MD, Ambariyanto Erdmann MV, Kovitvongsa K, Barber PH (2008) Phylogeography and limited genetic connectivity in the endangered giant boring clam, Tridacna crocea, across the Coral Triangle. Conserv Biol 22:1255–1266

    Article  Google Scholar 

  • Duda TF, Palumbi SR (1999) Population structure of the black tiger prawn, Penaeus monodon, among western Indian Ocean and western Pacific populations. Mar Biol 134:705–710

    Article  Google Scholar 

  • Duran S, Palacin C, Becerro MA, Turon X, Giribet G (2004) Genetic diversity and population structure of the commercially harvested sea urchin Paracentrotus lividus (Echinodermata, Echinoidea). Mol Ecol 13:3317–3328

    Article  PubMed  CAS  Google Scholar 

  • Edinger EN, Jompa J, Limmon GV, Widjatmoko W, Risk MJ (1998) Reef degradation and coral biodiversity in indonesia:Effects of land-based pollution, destructive fishing practices and changes over time. Mar Pollut Bull 36:617–630

    Article  CAS  Google Scholar 

  • Erdmann M (1995) An ABC guide to coral reef fisheries in southwest Sulawesi, Indonesia. Naga, ICLARM Quarterly 18(2):4–6

    Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes:application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  • Fauvelot C, Bernardi G, Planes S (2003) Reduction in the mitochondrial DNA diversity of coral reef fish provides evidence of population bottlenecks resulting from Holocene sea-level change. Evolution 57:1571–1583

    PubMed  CAS  Google Scholar 

  • Fox HE, Mous PS, Pet JS, Muljadi AH, Caldwell RL (2005) Experimental assessment of coral reef rehabilitation following blast fishing. Conserv Biol 19:98–107

    Article  Google Scholar 

  • Fratini S, Vannini M (2002) Genetic differentiation in the mud crab Scylla serrata (Decapoda:Portunidae) within the Indian Ocean. J Exp Mar Biol Ecol 272:103–116

    Article  CAS  Google Scholar 

  • Froukh T, Kochzius M (2007) Genetic population structure of the endemic fourline wrasse (Larabicus quadrilineatus) suggests limited larval dispersal distances in the Red Sea. Mol Ecol 16:1359–1367

    Article  PubMed  CAS  Google Scholar 

  • Froukh T, Kochzius M (2008) Species boundaries and evolutionary lineages in the blue green damselfishes Chromis viridis and C. atripectoralis (Pomacentridae). J Fish Biol 72:451–457

    Article  Google Scholar 

  • Fu FX (1997) Statistical test of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    PubMed  CAS  Google Scholar 

  • Godfrey JS (1996) The effect of the Indonesian throughflow on ocean circulation and heat exchange with the atmosphere:A review. J Geophys Res 101:12217–12238

    Article  Google Scholar 

  • Godfrey JS, Masumoto (1999) Diagnosing the mean strength of the Indonesian Throughflow in an ocean general circulation model. J Geophys Res 104:7889–7895

    Article  Google Scholar 

  • Gordon AL (2005) Oceanography of the Indonesian seas and their throughflow. Oceanography 18:14–27

    Google Scholar 

  • Gordon AL, Fine RA (1996) Pathways of water between the Pacific and Indian oceans in the Indonesian seas. Nature 379:146–149

    Article  CAS  Google Scholar 

  • Goren M, Dor M (1994) An updated checklist of the fishes of the Red Sea–CLOFRES II. Israel Academy of Sciences and Humanities, Jerusalem

    Google Scholar 

  • Hall TA (1999) BioEdit:a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp 41:95–98

    CAS  Google Scholar 

  • Hassan M, Harmelin-Vivien M, Bonhomme F (2003) Lessepsian invasion without bottleneck:examples of two rabbitfish species (Siganus rivulatus and Siganus luridus). J Exp Mar Biol Ecol 291:219–232

    Google Scholar 

  • Hendiarti N, Siegel H, Ohde T (2004) Investigation of different coastal processes in Indonesian waters using SeaWiFS data. Deep-Sea Res Pt II 51:85–97

    Article  CAS  Google Scholar 

  • Hoeksema BW (2007) Delineation of the Indo-Malayan centre of maximum marine biodiversity: the coral triangle. In: Renema W (ed) Biogeography, time and place: distributions, barriers and islands, Top Geobiol 29: 117–178

  • Hopley D, Suharsono (2000) The Status of coral reefs in eastern Indonesia. Global Coral Reef Monitoring Network (GCRMN)

  • Imron Jeffrey B, Hale P, Degnan BM, Degnan SM (2007) Pleistocene isolation and recent gene flow in Haliotis asinina, an Indo-Pacific vetigastropod with limited dispersal capacity. Mol Ecol 16:289–304

    Article  PubMed  CAS  Google Scholar 

  • Ishikura M, Adachi K, Maruyama T (1999) Zooxanthellae release glucose in the tissue of a giant clam, Tridacna crocea. Mar Biol 133:665–673

    Article  CAS  Google Scholar 

  • Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance web service. BMC Genet 6:13

    Article  PubMed  CAS  Google Scholar 

  • Jokiel P, Martinelli FJ (1992) The vortex model of coral reef biogeography. J Biogeogr 19:449–458

    Article  Google Scholar 

  • Juinio-Meñez MA, Magsino RM, Ravago-Gotanco R, Yu ET (2003) Genetic structure of Linckia laevigata and Tridacna crocea populations in the Palawan shelf and shoal reefs. Mar Biol 142:717–726

    Google Scholar 

  • Kittiwattanawong K (1997) Genetic structure of giant clam, Tridacna maxima in the Andaman Sea, Thailand. Spec Publ Phuket Mar Biol Cent 17:109–114

    Google Scholar 

  • Kittiwattanawong K, Nugranad J, Srisawat T (2001) High genetic divergence of Tridacna squamosa living at the west and east coasts of Thailand. Spec Publ Phuket Mar Biol Cent 25:343–347

    Google Scholar 

  • Klausewitz W (1989) Evolutionary history and zoogeography of the Red Sea ichthyofauna. Fauna of Saudi Arabia 10:310–337

    Google Scholar 

  • Knittweis L, Krämer WE, Timm J, Kochzius M (2009) Genetic structure of Heliofungia actiniformis (Scleractinia:Fungiidae) populations in the Indo-Malay Archipelago:implications for live coral trade management efforts. Conserv Genet 10:241–249

    Article  Google Scholar 

  • Kochzius M, Blohm D (2005) Genetic population structure of the lionfish Pterois miles (Scorpaenidae, Pteroinae) in the Gulf of Aqaba and northern Red Sea. Gene 347:295–301

    Article  PubMed  CAS  Google Scholar 

  • Kochzius M, Nuryanto A (2008) Strong genetic population structure in the boring giant clam Tridacna crocea across the Indo-Malay Archipelago:implications related to evolutionary processes and connectivity. Mol Ecol 17:3775–3787

    Article  PubMed  CAS  Google Scholar 

  • Kochzius M, Söller R, Khalaf MA, Blohm D (2003) Molecular phylogeny of the lionfish genera Dendrochirus and Pterois (Scorpaenidae, Pteroinae) based on mitochondrial DNA sequences. Mol Phylogenet Evol 28:396–403

    Article  PubMed  CAS  Google Scholar 

  • Laurent V, Planes S, Salvat B (2002) High variability of genetic pattern in giant clam (Tridacna maxima) populations within French Polynesia. Biol J Linn Soc 77:221–231

    Article  Google Scholar 

  • Leggat W, Buck BH, Grice A, Yellowlees D (2003) The impact of bleaching on the metabolic contribution of dinoflagellate symbionts to their giant clam host. Plant Cell Environ 26:1951–1961

    Article  CAS  Google Scholar 

  • Lessios HA, Kessing BD, Pearse JS (2001) Population structure and speciation in tropical seas:global phylogeography of the sea urchin Diadema. Evolution 55:955–975

    Article  PubMed  CAS  Google Scholar 

  • Lourie SA, Green DM, Vincent ACJ (2005) Dispersal, habitat differences, and comparative phylogeography of Southeast Asian seahorses (Syngnathidae:Hippocampus). Mol Ecol 14:1073–1094

    Article  PubMed  CAS  Google Scholar 

  • Lucas JS (1988) Giant clams: description, distribution and life history. In: Copland JW, Lucas JS (eds) Giant clams in Asia and the Pacific. Australian Centre for International Agricultural Research, Canberra, pp 21–32

    Google Scholar 

  • Lucas JS (1994) The biology, exploitation and mariculture of giant clams (Tridacnidae). Rev Fish Sci 2:181–223

    Article  Google Scholar 

  • Luttikhuizen PC, Drent J, Baker AJ (2003) Disjunct distribution of highly diverged mitochondrial lineage clade and population subdivision in a marine bivalve with pelagic larval dispersal. Mol Ecol 12:2215–2229

    Article  PubMed  CAS  Google Scholar 

  • Macaranas JM, Ablan CA, Pante MJR, Benzie JAH, Williams STH (1992) Genetic structure of giant clam (Tridacna derasa) populations from reefs in the Indo-Pacific. Mar Biol 113:231–238

    Google Scholar 

  • Maier E, Tollrian R, Rinkevich B, Nürnberger B (2005) Isolation by distance in the scleractinian coral Seriatopora hystrix from the Red Sea. Mar Biol 147:1109–1120

    Article  Google Scholar 

  • McManus JW (1985) Marine speciation, tectonics and sea-level changes in Southeast Asia. Proc 5th Int Coral Reef Symp 4:133–138

  • Mous PJ, Pet JS, Arifin Z, Djohani R, Erdmann MV, Halim A, Knight H, Pet-Soede L, Wiadnya G (2005) Policy needs to improve marine capture fisheries management and to define a role for marine protected areas in Indonesia. Fish Manag Ecol 12:259–268

    Article  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nei M, Jin L (1989) Variances of the average numbers of nucleotide substitutions within and between populations. Mol Biol Evol 6:290–300

    PubMed  CAS  Google Scholar 

  • Nelson JS, Hoddell RJ, Chou LM, Chan WK, Phang VPE (2000) Phylogeographic structure of false clownfish, Amphiprion ocellaris, explained by sea level changes on the Sunda shelf. Mar Biol 137:727–736

    Article  CAS  Google Scholar 

  • Ovenden JR, Salini JS, O’Connor, Street R (2004) Pronounced genetic population structure in a potentially vagile fish species (Pristipomoides multidens, Teleostei, Perciformes, Lutjanidae) from the East Indies triangle. Mol Ecol 13:1991–1999

    Article  PubMed  CAS  Google Scholar 

  • Palumbi SR (2001) The ecology of marine protected areas. In: Bertness MD, Gaines SM, Hixon ME (eds) Marine Community Ecology. Sinauer Associates, Sunderland, pp 509–530

    Google Scholar 

  • Palumbi SR (2003) Population genetics, demographic connectivity, and the design of marine reserves. Ecol Appl 13:S146–S158

    Article  Google Scholar 

  • Pasaribu BP (1988) Status of giant clams in Indonesia. In: Copland JW, Lucas JS (eds) Giant clams in Asia and the Pacific. Australian Centre for International Agricultural Research, Canberra, pp 44–46

    Google Scholar 

  • Perrin C, Borsa P (2001) Mitochondrial DNA analysis of the geographic structure of Indian scad mackerel in the Indo-Malay Archipelago. J Fish Biol 59:1421–1426

    Article  CAS  Google Scholar 

  • Pet J (1997) Destructive fishing methods in and around Komodo National Park. SPC Live Reef Fish Information Bulletin 2:20–24

    Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest:testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  • Ravago-Gotanco RG, Magsino RM, Juinio-Menez MA (2007) Influence of the North Equatorial Current on the population genetic structure of Tridacna crocea (Mollusca:Tridacnidae) along the eastern Philippine seaboard. Mar Ecol Prog Ser 336:161–168

    Article  CAS  Google Scholar 

  • Reid DG, Lal K, Mackenzie-Dodds J, Kaligis F, Littlewood DTJ, Williams ST (2006) Comparative phylogeography and species boundaries in Echinolittorina snails in the central Indo-West Pacific. J Biogeogr 33:990–1006

    Article  Google Scholar 

  • Richter C, Roa-Quiaoit H, Jantzen C, Al-Zibdah M, Kochzius M (2008) Collapse of a new living species of giant clam in the Red Sea. Curr Biol 18:1349–1354

    Article  PubMed  CAS  Google Scholar 

  • Ridgway T, Sampayo EM (2005) Population genetic status of the Western Indian Ocean:what do we know? Western Indian Ocean J Mar Sci 4:1–9

    Google Scholar 

  • Risk MJ, Erdmann MV (2000) Isotopic composition of Nitrogen in stomatopod (Crustacea) tissues as an indicator of human sewage impacts on Indonesian coral reefs. Mar Pollut Bull 40:50–58

    Article  CAS  Google Scholar 

  • Roberts CM, McClean CJ, Veron JEN, Hawkins JP, Allen GR, McAllister DE, Mittermeier CG, Schueler FW, Spalding M, Wells F, Vynne C, Werner TB (2002) Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295:1280–1284

    Article  PubMed  CAS  Google Scholar 

  • Rogers AR (1995) Genetic evidence for Pleistocene population expansion. Evolution 49:608–615

    Article  Google Scholar 

  • Rogers AL, Harpending H (1992) Population growth makes in the distribution of pairwise genetics differences. Mol Biol Evol 9:552–569

    PubMed  CAS  Google Scholar 

  • Rohfritsch A, Borsa P (2005) Genetic structure of Indian scad mackerel Decapterus russelli:Pleistocene vicariance and secondary contact in the Central Indo-West Pacific Seas. Heredity 95:315–326

    Article  PubMed  CAS  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin, version 2.000. University of Geneva, Geneva

    Google Scholar 

  • Shefer S, Abelson A, Mokady O, Geffen E (2004) Red to Mediterranean Sea bioinvasion:natural drift through the Suez Canal, or anthropogenic transport? Mol Ecol 12:2333–2343

    Article  CAS  Google Scholar 

  • Siddall M, Smeed DA, Matthiesen S, Rohling EJ (2002) Modelling the seasonal cycle of the exchange flow in Bab el Mandab (Red Sea). Deep-Sea Res Pt I 49:1551–1569

    Article  Google Scholar 

  • Spalding MD, Ravilious C, Green EP (2001) World atlas of coral reefs. UNEP World Conservation Monitoring Centre, University of California Press, Berkeley

    Google Scholar 

  • Sugama K, Haryanti, Benzie JAH, Ballment E (2002) Genetic variation and population structure of the giant tiger prawn, Penaeus monodon, in Indonesia. Aquaculture 205:37–48

    Article  CAS  Google Scholar 

  • Susanto RD, Gordon AL (2005) Velocity and transport of the Makassar Strait throughflow. J Geophysl Res 110:C01005

    Article  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed  CAS  Google Scholar 

  • Thompson JG, Higgins DG, Gibson TJ (1994) CLUSTAL W:improving the sensitivity of progressive multiple sequence alignments through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Timm J, Kochzius M (2008) Geological history and oceanography of the Indo-Malay Archipelago shape the genetic population structure in the False Clown Anemonefish (Amphiprion ocellaris). Mol Ecol 17:3999–4014

    Article  PubMed  Google Scholar 

  • Timm J, Figiel M, Kochzius M (2008) Contrasting patterns in species boundaries and evolution of anemonefishes (Amphiprioninae, Pomacentridae) in the centre of marine biodiversity. Mol Phylogenet Evol 49:268–276

    Article  PubMed  CAS  Google Scholar 

  • Veron JEN (2000) Corals of the world. Australian Institute of Marine Science and CRR Qld Pty Ltd

  • Voris HK (2000) Maps of Pleistocene sea levels in Southeast Asia:shorelines, river systems and time duration. J Biogeogr 27:1153–1167

    Article  Google Scholar 

  • Wabnitz C, Taylor M, Green E, Razak T (2003) From ocean to aquarium. UNEP-WCMC, Cambridge, UK

    Google Scholar 

  • Walsh PS, Metzger DA, Higushi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques 10:506–513

    PubMed  CAS  Google Scholar 

  • Wells S (1997) Giant clams:status, trade and mariculture, and the role of CITES management. IUCN, Gland, Switzerland and Cambridge, UK

    Google Scholar 

  • Wilkinson C (2002) Status of coral reefs of the world:2002. Australian Institute of Marine Science

  • Williams ST, Benzie JAH (1998) Evidence of a biogeographic break between populations of a high dispersal starfish:congruent regions within the Indo-West Pacific defined by color morphs, mtDNA, and allozyme data. Evolution 52:87–99

    Article  Google Scholar 

  • Woodland DJ (1983) Zoogeography of the Siganidae (Pisces): an interpretation of distribution and richness pattern. Bull Mar Sci 33:713–717

    Google Scholar 

  • Wörheide G, Epp LS, Macis L (2008) Deep genetic divergences among Indo-Pacific populations of the coral reef sponge Leucetta chagosensis (Leucettidae):Founder effects, vicariance, or both? BMC Evol Biol 8:24

    Article  PubMed  CAS  Google Scholar 

  • Wyrtki K (1961) Physical oceanography of the Southeast Asian waters. University of California, La Jolla, USA

    Google Scholar 

  • You E-M, Chiu T-S, Liu K-F, Tassanakajon A, Klinbunga S, Triwitayakorn K, de la Peña LD, Li Y, Yu H-T (2008) Microsatellite and mitochondrial haplotype diversity reveal population differentiation in the tiger shrimp (Peneus monodon) in the Indo-Pacific region. Anim Genet [doi:10.1111/j.1365-2052.2008.01724.x]

  • Yu ET, Juinio-Meñez MA, Monje VD (2000) Sequence variation in the ribosomal DNA internal transcribed spacer of Tridacna crocea. Mar Biotechnol 2:511–516

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We would like to thank the institutions and individuals that have made our study possible: German Federal Ministry of Education and Research (BMBF, Grant no. 03F0390B), which funded the project ‘Molecular Genetics as a Tool for the Management of Marine Ornamentals in Sulawesi (Indonesia)’ in the framework of the joint German-Indonesian project SPICE (Science for the Protection of Indonesian Coastal Marine Ecosystems); German Academic Exchange Service (DAAD) for supporting A. Nuryanto; Centre for Tropical Marine Ecology (Bremen, Germany) for project co-ordinated, especially C. Richter; colleagues from the University of Bremen, especially J. Timm for help during field work; colleagues from Universitas Hasanuddin (Makassar, Indonesia) for logistical support in Spermonde, especially J. Jompa; anonymous reviewers for constructive comments. The SPICE project is conducted and permitted under the governmental agreement between the German Federal Ministry of Education and Research (BMBF) and the Indonesian Ministry for Research and Technology (RISTEK), Indonesian Institute of Sciences (LIPI), Indonesian Ministry of Maritime Affairs and Fisheries (DKP), and Agency for the Assessment and Application of Technology (BPPT). This work was carried out in co-operation with Hassanuddin University (UNHAS, Makassar, Indonesia), Agricultural University Bogor (IPB, Bogor, Indonesia), and Jenderal Soedirman University (Purwokerto, Indonesia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kochzius.

Additional information

Communicated by Biology Editor Dr. Ruth Gates

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nuryanto, A., Kochzius, M. Highly restricted gene flow and deep evolutionary lineages in the giant clam Tridacna maxima . Coral Reefs 28, 607–619 (2009). https://doi.org/10.1007/s00338-009-0483-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-009-0483-y

Keywords

Navigation