Skip to main content
Log in

Growth of amorphous SiO2 nanowires on Si using a Pd/Au thin film as a catalyst

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanowires of amorphous SiO2 were synthesized by thermal processing of a Si(100) substrate at 1100 °C in the presence of a nitrogen flow, and using a 15 nm thick high silicon-solubility Pd/Au film as a catalyst. The substrate itself was the only source of silicon for the nanowire growth. The nanostructures produced were characterized by high resolution transmission and scanning electron microscopy and by X-ray diffraction. The nanowire growth is consistent with the vapor-liquid-solid (VLS) mechanism, with particles of Pd2Si and Au(Pd) being observed to form from the reaction between silicon and the catalytic film, and to remain at the tip of the wires. The synthesized nanowires showed a well defined morphology which could be very interesting for lasing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley: Nature 318, 162 (1985)

    Article  ADS  Google Scholar 

  2. S. Iijima: Nature 354, 56 (1991)

    Article  ADS  Google Scholar 

  3. S.J. Tans, M.H. Devoret, H. Dai, A. Thess, R.E. Smalley, L.J. Georliga, C. Dekker: Nature 386, 474 (1997)

    Article  ADS  Google Scholar 

  4. N. Grobert, J.P. Hare, W.K. Hsu, H.W. Kroto, A.J. Pidduck, C.L. Reeves, H. Terrones, M. Terrones, S. Trasobares, C. Vizard, D.J. Wallis, D.R.M. Walton, P.J. Wright, Y.Q. Zhu: Nanotechnology of nanotubes and nanowires: From aligned carbon nanotubes to silicon oxide nanowires, AIP Conf. Procs. (Kirchberg Tyrol, Austria, AIP 1998) pp. 29–33

  5. L.T. Canham: Appl. Phys. Lett. 57, 1046 (1990)

    Article  ADS  Google Scholar 

  6. A.G. Cullis, L.T. Canham: Nature 353, 335 (1991)

    Article  ADS  Google Scholar 

  7. D.P. Yu, Q.L. Hang, Y. Ding, H.Z. Zhang, Z.G. Bai, J.J. Wang, Y.H. Zou, W. Qian, G.C. Xiong, S.Q. Feng: Appl. Phys. Lett. 73, 3076 (1998)

    Article  ADS  Google Scholar 

  8. A.M. Morales, C.M. Lieber: Science 279, 208 (1998)

    Article  ADS  Google Scholar 

  9. Y. Wu, R. Fan, P. Yang: Nano Lett. 2, 83 (2002)

    Article  ADS  Google Scholar 

  10. J.D. Holmes, K.P. Johnston, R.C. Doty, B.A. Korgel: Science 287, 1471 (2000)

    Article  ADS  Google Scholar 

  11. M. Paulose, O.K. Varghese, C.A. Grimes: J. Nanosci. and Technol. 3, 341 (2003)

    Google Scholar 

  12. R. Ma, Y. Bando: Chem. Phys. Lett. 377, 177 (2003)

    Article  ADS  Google Scholar 

  13. J.C. Wang, C.Z. Zhan, F.G. Li: Solid State Commun. 125, 629 (2003)

    Article  ADS  Google Scholar 

  14. Z. Zhang, B.Q. Wei, P.M. Ajayan: J. Phys.: Condens. Matter 14, L511 (2002)

  15. Z.W. Pan, Z.R. Dai, C. Ma, Z.L. Wang: J. Am. Chem. Soc. 124, 1817 (2002)

    Article  Google Scholar 

  16. S.H. Sun, G.W. Meng, M.G. Zhang, Y.T. Tian, T. Xie, L.D. Zhang: Solid State Commun. 128, 287 (2003)

    Article  ADS  Google Scholar 

  17. J.Q. Hu, Y. Jiang, X.M. Meng, C.S. Lee, S.T. Lee: Chem. Phys. Lett. 367, 339 (2003)

    Article  ADS  Google Scholar 

  18. Z.Y. Qui, H.W. Bing, H.W. Kuang, M. Terrones, N. Grobert, T. Karali, H. Terrones, J.P. Hare, P.D. Townsend, H.W. Kroto, D.R.M. Walton: Adv. Mater. 11, 844 (1999)

    Article  Google Scholar 

  19. Y.W. Wang, C.H. Liang, G.W. Meng, X.S. Peng, L.D. Zhang: J. Mater. Chem. 12, 651 (2002)

    Article  Google Scholar 

  20. X.C. Wu, W.H. Song, K.Y. Wang, T. Hu, B. Zhao, Y.P. Sun, J.J. Du: Chem. Phys. Lett. 336, 53 (2001)

    Article  ADS  Google Scholar 

  21. J. Qi, J.M. White, A.M. Belcher, Y. Masumoto: Chem. Phys. Lett. 372, 763 (2003)

    Article  ADS  Google Scholar 

  22. X. Wu, C. Ossadnik, C. Eggs, S. Veprek, F. Phillipp: J. Vac. Sci. Technol. B 20, 1368 (2002)

    Article  Google Scholar 

  23. L. Khriachtchev, M. Rasanen, S. Novikov, J. Sinkkonen: Appl. Phys. Lett. 79, 1249 (2001)

    Article  ADS  Google Scholar 

  24. R.S. Wagner, W.C. Ellis: Appl. Phys. Lett. 4, 89 (1964)

    Article  ADS  Google Scholar 

  25. L. Dong, J. Jiao, D.W. Tuggle, J.M. Petty, S.A. Elliff, M. Coulter: Appl. Phys. Lett. 82, 1096 (2003)

    Article  ADS  Google Scholar 

  26. P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, H.-J. Choi: Adv. Funct. Mater. 12, 323 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.J. Yacaman.

Additional information

PACS

81.05.Ys; 81.10.Bk; 85.40.Ux

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elechiguerra, J., Manriquez, J. & Yacaman, M. Growth of amorphous SiO2 nanowires on Si using a Pd/Au thin film as a catalyst. Appl. Phys. A 79, 461–467 (2004). https://doi.org/10.1007/s00339-004-2597-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-004-2597-y

Keywords

Navigation