Skip to main content
Log in

Surface nanostructuring of metals by laser irradiation: effects of pulse duration, wavelength and gas atmosphere

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Surface modifications by nanostructuring present a new laser application for improvement of surface properties such as adhesion, mechanical characteristics or corrosion protection. In this study, we report the formation of nanoparticles by laser irradiation of a steel surface. The influence of laser parameters such as pulse duration (25–30 ns, 500 fs), wavelength (248 nm, 308 nm), and the background gas pressure (10 mbar-1 bar) on the formation of this back deposition layer composed of aggregated iron oxide nanoparticles were investigated. Scanning electron microscopy and atomic force microscopy were used to characterise the irradiated steel surface and the particle morphology deposited by backward flux. In the nanosecond laser ablation regime, films are formed by aggregated nanoparticles with well developed cauliflower like structures, the size and the morphology depending on the nature and pressure of the background gas. In the femtosecond regime, we observed the formation of micrometer sized structures at the steel surface. In particular, a non-conventional mechanism of nanocluster condensation and growth is revealed since two different ablation rates corresponding to two different predominant processes are observed. These analyses demonstrate the possibility of controlling the distribution and the size of particles by varying the laser parameters and the background gas pressure and nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bäuerle: Laser processing and chemistry (Springer-Verlag, Berlin, Heildeberg 2000) p. 535

  2. P. Schaaf: Prog. Mater. Sci. 47, 1 (2002)

    Article  Google Scholar 

  3. C.J. Copola, I. Avram, M.C. Terzzoli, S. Duhalde, C. Morales, T. Perez, F. Audebert, P. Delaporte, M. Sentis: Appl. Surf. Sci. 197/198, 896 (2002)

    Google Scholar 

  4. A. Pereira, A. Cros, P. Delaporte, W. Marine, M. Sentis: Appl. Surf. Sci. 197/198, 845 (2002)

    Google Scholar 

  5. A. Pereira, P. Delaporte, M. Sentis, A. Cros, W. Marine, A. Basillais, A.L. Thomann, C. Leborgne, N. Semmar, P. Andreazza, T. Sauvage: Thin Solid Films 453454, 16 (2004)

  6. D.B. Chrisey, G.K. Hubler: Pulsed Laser Deposition of Thin Films (Wiley, NY 1994)

  7. I.A. Movtchan, R.W. Dreyfus, W. Marine, M. Sentis, M. Autric, G. Le Lay, N. Merk: Thin Solid Films 255, 286 (1995)

    Article  ADS  Google Scholar 

  8. A. Pereira, A. Cros, P. Delaporte, W. Marine, M. Sentis: Appl. Surf. Sci. 208/209, 417 (2003)

    Google Scholar 

  9. I.A. Movtchan, W. Marine, R.W. Dreyfus, H.C. Le, M. Sentis, M. Autric: Appl. Surf. Sci. 96/98, 251 (1996)

    Google Scholar 

  10. W. Marine, L. Patrone, B. Luk’yanchuk, M. Sentis: Appl. Surf. Sci. 154/155, 345 (2000)

    Google Scholar 

  11. D. Bäuerle: Laser processing and chemistry (Springer-Verlag, Berlin, Heildeberg 2000) p. 70

  12. T. Scharf, H.U. Krebs: Appl. Phys. A 75, 551 (2002)

    Article  ADS  Google Scholar 

  13. Gas Encyclopaedia (Elsevier, L’Air Liquide, Amsterdam 1976)

  14. L. Patrone, D. Nelson, V.I. Safarov, M. Sentis, W. Marine, S. Giorgio: J. Appl. Phys. 87, 3829 (2000)

    Article  ADS  Google Scholar 

  15. B. Luk’yanchuk, W. Marine, S. Anisimov: Laser Phys. 8, 291 (1998)

    Google Scholar 

  16. T. Ohkubo, M. Kuwata, B. Luk’yanchuk, T. Yabe: Appl. Phys. A 77, 271 (2003)

    ADS  Google Scholar 

  17. R. Stoian, A. Rosenfeld, D. Ashkenasi, I.V. Hertel, N.M. Bulgakova, E.E.B. Campbell: Phys. Rev. Lett. 88, 097603 (2002)

    Article  ADS  Google Scholar 

  18. N.M. Bulgakova, I.M. Bourakov: Appl. Surf. Sci. 197/198, 41 (2002)

    Google Scholar 

  19. K. Eidmann, J. Meyer-ter-Vehn, T. Schlegel, S. Huller: Phys. Rev. E 62, 1202 (2000)

    Article  ADS  Google Scholar 

  20. V. Schmidt, W. Husinsky, G. Betz: Phys. Rev. Lett. 85, 3516 (2000)

    Article  ADS  Google Scholar 

  21. R. Teghil, L. D’Alessio, A. Santagata, M. Zaccagnino, D. Ferro, D.J. Sordelet: Appl. Surf. Sci. 210, 307 (2003)

    Article  ADS  Google Scholar 

  22. A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, D. Von der Linde: J. Appl. Phys. 85, 3301 (1999)

    Article  ADS  Google Scholar 

  23. B. Luk’yanchuk, W. Marine: Appl. Surf. Sci. 154, 314 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pereira.

Additional information

PACS

52.38.Mf; 81.65.-b; 81.15.Gh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, A., Cros, A., Delaporte, P. et al. Surface nanostructuring of metals by laser irradiation: effects of pulse duration, wavelength and gas atmosphere. Appl. Phys. A 79, 1433–1437 (2004). https://doi.org/10.1007/s00339-004-2804-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-004-2804-x

Keywords

Navigation