Skip to main content
Log in

Femtosecond laser ablation of gold in water: influence of the laser-produced plasma on the nanoparticle size distribution

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Femtosecond laser radiation has been used to ablate a gold target in pure deionized water to produce gold colloids. The dimensional distribution of nanoparticles is characterized by the simultaneous presence of two distinct particle populations: one with low dispersion, having a mean particle size of 5–20 nm, and one with high dispersion, having a much larger particle size. By changing the target position with respect to the radiation focus, we study the influence of the plasma formed after the laser pulse in front of the target, during nanofabrication process. We show that the most intense plasma is produced by positioning the target slightly before the geometric focal point. Here, the plasma intensity was found to correlate with the amount of ablated material as well as with the mean size of nanoparticles associated with the second, highly dispersed, distribution of nanoparticles; this suggests the involvement of plasma-related processes in the ablation of material, and the formation of relatively large particles. The thermal heating of the target by the plasma, and its mechanical erosion by the collapse of a plasma-induced cavitation bubble are discussed as possible ablation mechanisms. The gold nanoparticles produced in ultrapure water are of importance for biosensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.A. Schultz: Curr. Opin. Biotechnol. 14, 13 (2003)

    Article  Google Scholar 

  2. I. Lisiecki, M.P. Pileni: J. Am. Chem. Soc. 115, 3887 (1993)

    Article  Google Scholar 

  3. A. Fojtik, A. Henglein: Ber. Bunsen-Ges. Phys. Chem. 97, 252 (1993)

    Article  Google Scholar 

  4. J. Nedderson, G. Chumanov, T.M. Cotton: Appl. Spectrosc. 47, 1959 (1993)

    Article  ADS  Google Scholar 

  5. M. Prochazka, J. Stepanek, B. Vlckova, I. Srnova, P. Maly: J. Mol. Struct. 410, 213 (1997)

    Article  ADS  Google Scholar 

  6. F. Mafuné, J.-Y. Kohno, Y. Takeda, T. Kondow, H. Sawabe: J. Phys. Chem. B 104, 8333 (2000)

    Article  Google Scholar 

  7. F. Mafuné, J.-Y. Kohno, Y. Takeda, T. Kondow, H. Sawabe: J. Phys. Chem. B 104, 9111 (2000)

    Article  Google Scholar 

  8. F. Mafuné, J.-Y. Kohno, Y. Takeda, T. Kondow: J. Phys. Chem. B 105, 5114 (2001)

    Article  Google Scholar 

  9. F. Mafuné, J.-Y. Kohno, Y. Takeda, T. Kondow: J. Phys. Chem. B 107, 4218 (2003)

    Article  Google Scholar 

  10. Y.-H. Chen, C.S. Yeh: Coll. Surf. A 197, 133 (2002)

    Article  Google Scholar 

  11. A.V. Kabashin, M. Meunier, C. Kingston, J.H.T. Luong: J. Phys. Chem. B 107, 4527 (2003)

    Article  Google Scholar 

  12. J.-P. Sylvestre, A.V. Kabashin, E. Sacher, M. Meunier, J.H.T. Luong: J. Am. Chem. Soc. 126, 7176 (2004)

    Article  Google Scholar 

  13. J.-S Jeon, C.-S. Yeh: J. Chin. Chem. Soc. 45, 721 (1998)

    Article  Google Scholar 

  14. A.V. Simakin, V.V. Voronov, G.A. Shafeev, R. Brayner, F. Bozon-Verduraz: Chem. Phys. Lett. 348, 182 (2001)

    Article  ADS  Google Scholar 

  15. S.I. Dolgaev, A.V. Simakin, V.V. Voronov, G.A. Shafeev, F. Bozon-Verduraz: Appl. Surf. Sci. 186, 546 (2002)

    Article  ADS  Google Scholar 

  16. T. Tsuji, K. Iryo, N. Watanabe, M. Tsuji: Appl. Surf. Sci. 202, 80 (2002)

    Article  ADS  Google Scholar 

  17. T. Tsuji, T. Kakita, M. Tsuji: Appl. Surf. Sci. 206, 314 (2003)

    Article  ADS  Google Scholar 

  18. A.V. Kabashin, M. Meunier: J. Appl. Phys. 94, 7941 (2003)

    Article  ADS  Google Scholar 

  19. G. Compagnini, A.A. Scalisi, O. Puglisi: Phys. Chem. Chem. Phys. 4, 2787 (2002)

    Article  Google Scholar 

  20. J. Szejtli: Chem. Rev. 98, 1743 (1998)

    Article  Google Scholar 

  21. A. Brodeur, S.L. Chin: Phys. Rev. Lett. 80, 4406 (1998)

    Article  ADS  Google Scholar 

  22. A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D.X. Hammer, G.D. Noojin, B.A. Rockwell, R. Birngruber: Appl. Phys. B 68, 271 (1999)

    Article  ADS  Google Scholar 

  23. P.K. Kennedy, D.X. Hammer, B.A. Rockwell: Prog. Quantum Electr. 21, 155 (1997)

    Article  ADS  Google Scholar 

  24. J.F. Ready, D.F. Farson, Eds.: LIA Handbook of Laser Materials Processing (Springer, Heidelberg 2001)

  25. L.A. Chiu, A.A. Seraphin, K.D. Kolenbrander: J. Electron. Mater. 23, 347 (1994)

    Article  ADS  Google Scholar 

  26. D.B. Geohegan, A.A. Puretzky, G. Duscher, S.J. Pennycook: Appl. Phys Lett. 72, 2987 (1998)

    Article  ADS  Google Scholar 

  27. W. Liu, O. Kosareva, I.S. Golubstov, A. Iwasaki, A. Becker, V.P. Kandidov, S.L. Chin: Appl. Phys. B 76, 215 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Meunier.

Additional information

PACS

81.07.-b; 81.16.-c

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sylvestre, JP., Kabashin, A., Sacher, E. et al. Femtosecond laser ablation of gold in water: influence of the laser-produced plasma on the nanoparticle size distribution. Appl. Phys. A 80, 753–758 (2005). https://doi.org/10.1007/s00339-004-3081-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-004-3081-4

Keywords

Navigation