Skip to main content
Log in

Laser-assisted decomposition of alkylsiloxane monolayers at ambient conditions: rapid patterning below the diffraction limit

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Rapid patterning of octadecylsiloxane monolayers at ambient conditions is demonstrated using a focused laser beam at a wavelength of 514 nm. Surface-oxidized silicon substrates have been coated and subsequently processed at distinct laser powers over a wide range of writing speeds up to 25 mm/s. The method allows for a well-confined local decomposition of the monolayer with an unexpectedly high lateral resolution which is significantly below the diffraction limited laser spot diameter of the optical setup. In particular, at a 1/e2 focal spot diameter of about 2.5 μm line widths close to 200 nm are reached. Complementary experiments at a spot diameter of about 1.2 μm yielded irregular lines with a minimum width close to 100 nm. The underlying highly superlinear dependence of the patterning process on the laser intensity is attributed to the interplay between the laser-induced local temperature rise and the thermally activated decomposition of the organic coating. A simple thermokinetic analysis of the data allows one to estimate effective kinetic parameters of the decomposition process and reproduce the experimentally observed functional dependence of the line width on the incident laser power and the writing speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maoz R, Cohen SR, Sagiv J (1999) Adv. Mater. 11:55

    Article  Google Scholar 

  2. Piner RD, Zhu J, Xu F, Hong S, Mirkin CA (1999) Science 283:661

    Article  Google Scholar 

  3. Kumar A, Whitesides GM (1993) Appl. Phys. Lett. 63:2002

    Article  ADS  Google Scholar 

  4. Dulcey CS, Georger JH, Krauthamer V, Stenger DA, Fare TL, Calvert JM (1991) Science 252:551

    Article  ADS  Google Scholar 

  5. Tarlov MJ, Burgess Jr DRF, Gillen G (1993) J. Am. Chem. Soc. 115:5305

    Article  Google Scholar 

  6. Sugimura H, Ushiyama K, Hozumi A, Takai O (2000) Langmuir 16:885

    Article  Google Scholar 

  7. Friebel S, Aizenberg J, Abad S, Wiltzius P (2000) Appl. Phys. Lett. 77:2406

    Article  ADS  Google Scholar 

  8. Kim SO, Solak HH, Stoykovich MP, Ferrier NL, de Pablo JJ, Nealey PF (2003) Nature 424:411

    Article  ADS  Google Scholar 

  9. Gölzhäuser A, Greyer W, Stadler V, Eck W, Grunze M, Edinger K, Weimann T, Hinze P (2000) J. Vac. Sci. Technol. B 18:3414

    Article  Google Scholar 

  10. Tiberio RC, Craighead HG, Lercel M, Lau T, Sheen CW, Allara DL (1993) Appl. Phys. Lett. 62:476

    Article  ADS  Google Scholar 

  11. Lercel M, Craighead HG, Parikh AN, Seshadri K, Allara DL (1996) Appl. Phys. Lett. 68:1504

    Article  ADS  Google Scholar 

  12. Xu S, Miller S, Laibinis PE, Liu G-Y (1999) Langmuir 15:7244

    Article  Google Scholar 

  13. Klauser R, Huang M-L, Wang S-C, Chen C-H, Chuang TJ, Terfort A, Zharnikov M (2004) Langmuir 20:2050

    Article  Google Scholar 

  14. Shadnam MR, Kirkwood SE, Fedosejevs R, Amirfazli A (2004) Langmuir 20:2667

    Article  Google Scholar 

  15. Balgar T, Franzka S, Hartmann N, Hasselbrink E (2004) Langmuir 20:3525

    Article  Google Scholar 

  16. T. Balgar, S. Franzka, E. Hasselbrink, N. Hartmann, Appl. Phys. A, accepted

  17. Bäuerle D (2000) Laser Processing and Chemistry. Springer-Verlag, Berlin

    Book  Google Scholar 

  18. Ehrlich DJ, Tsao JY (eds) (1989) Laser Microfabrication. Academic Press, Boston

    Google Scholar 

  19. Müllenborn M, Birkelund K, Grey F, Madsen S (1996) Appl. Phys. Lett. 69:3013

    Article  ADS  Google Scholar 

  20. Müllenborn M, Dirac H, Petersen JW (1995) Appl. Phys. Lett. 66:3001

    Article  ADS  Google Scholar 

  21. Ehrlich DJ, Tsao JY (1984) Appl. Phys. Lett. 44:267

    Article  ADS  Google Scholar 

  22. Sung MM, Carraro C, Yauw OW, Kim Y, Maboudian R (2000) Phys J. Chem. B 104:1556

    Google Scholar 

  23. Wasserman SR, Whitesides GM, Tidswell IM, Ocko BM, Pershan PS, Axe JD (1989) J. Am. Chem. Soc. 111:5852

    Article  Google Scholar 

  24. Resch R, Grasserbauer M, Friedbacher G, Vallant T, Brunner H, Mayer U, Hoffmann H (1999) Appl. Surf. Sci. 140:168

    Article  ADS  Google Scholar 

  25. Balgar T, Bautista R, Hartmann N, Hasselbrink E (2003) Surf. Sci. 532–535:963

    Article  ADS  Google Scholar 

  26. Kluth GJ, Sung MM, Maboudian R (1997) Langmuir 13:3775

    Article  Google Scholar 

  27. Kluth GJ, Sander M, Sung MM, Maboudian R (1998) J. Vac. Sci. Technol. A 16:932

    Article  ADS  Google Scholar 

  28. Gomer R (1994) Surf. Sci. 299–300:129

    Article  ADS  Google Scholar 

  29. Städele M, Tuttle BR, Hess KJ (2001) J. Appl. Phys. 89:348

    Article  ADS  Google Scholar 

  30. Zhou X-L, Zhu X-Y, White JM (1991) Surf. Sci. Rep. 13:73

    Article  ADS  Google Scholar 

  31. Richter LJ, Cavanagh RR (1992) Prog. Surf. Sci. 39:155

    Google Scholar 

  32. Kuball M, Rajasingam S, Sarua A, Uren MJ, Martin T, Hughes BT, Hilton KP, Balmer RS (2003) Appl. Phys. Lett. 82:124

    Article  ADS  Google Scholar 

  33. Poate JM, Mayer JW (eds)(1982) Laser Annealing of Semiconductors. Academic Press, New York

    Google Scholar 

  34. Dirac H (1996) Laser Micromachining of Silicon. Technical University of Denmark, Lyngby

    Google Scholar 

  35. Ready JF (1971) Effects of High-Power Laser Radiation. Academic Press, New York

    Google Scholar 

  36. D.R. Lide, H.P.R. Frederikse (eds) Handbook of Chemistry and Physics (CRC Press, Boca Raton 1994–1995)

  37. Pilling MJ, Seakins PW (1999) Reaction Kinetics. Oxford University Press, Oxford

    Google Scholar 

  38. Burgess D, Stair PC, Weitz E (1986) J. Vac. Sci. Technol. A 4:1362

    Article  ADS  Google Scholar 

  39. Hucknall DJ (ed)(1985) Chemistry of Hydrocarbon Combustion. Chapman and Hall, London

    Google Scholar 

  40. Safarik I, Strausz OP (1996) Res. Chem. Intermediat. 22:275

    Article  Google Scholar 

  41. Ertl G, Neumann M (1972) Z. Naturforsch. 27A:1607

    Article  ADS  Google Scholar 

  42. Hall RB (1987) J. Phys. Chem. 91:1007

    Article  Google Scholar 

  43. Dürr M, Biedermann A, Hu Z, Höfer U, Heinz TF (2002) Science 296:1838

    Article  ADS  Google Scholar 

  44. Schreiber F (2000) Prog. Surf. Sci. 65:151

    Google Scholar 

  45. Lavrich DJ, Wetterer SM, Bernasek SL, Scoles G (1998) J. Phys. Chem. B 102:3456

    Article  Google Scholar 

  46. Kerner G, Asscher M (2004) Nano Lett. 4:1433

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Hartmann.

Additional information

PACS

81.16.Rf; 81.65.Cf; 82.50.Hp

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balgar, T., Franzka, S. & Hartmann, N. Laser-assisted decomposition of alkylsiloxane monolayers at ambient conditions: rapid patterning below the diffraction limit. Appl. Phys. A 82, 689–695 (2006). https://doi.org/10.1007/s00339-005-3439-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-005-3439-2

Keywords

Navigation