Skip to main content
Log in

Exciton photoluminescence from ZnO layers produced by laser-induced gas breakdown processing

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The plasma of optically-excited gas breakdown has been used to treat a Zn target in atmospheric pressure gases (air, O2, N2, Ar). The breakdown is produced near the target by a pulsed CO2 laser radiation, yielding to a local erosion of the target under the irradiation spot and the formation of a porous nanostructured layer, consisting of ZnO nanoscale spheres. We show that the produced nanostructured layers exhibit an intense exciton emission band in the ultraviolet range (380–385 nm), while defect-related photoluminescent bands were weak and could be completely removed by varying the fabrication parameters. Properties of the produced layers were found to be very promising for the development of optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Ozgur, Y.I. Alilov, C. Liu, A. Teke, M.A. Reshnikov, S. Dogan, V. Avrutin, S.-J. Cho, H. Morkoc, J. Appl. Phys. 98, 041301 (2005)

    Article  ADS  Google Scholar 

  2. Z.K. Tang, G.K.L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Appl. Phys. Lett. 72, 3270 (1998)

    Article  ADS  Google Scholar 

  3. H. Cao, Y.G. Zhao, S.T. Ho, E.W. Seelig, Q.H. Wang, R.P.H. Chang, Phys. Rev. Lett. 82, 2278 (1999)

    Article  ADS  Google Scholar 

  4. H. Cao, Y.G. Zhao, X. Liu, E.W. Seelig, R.P.H. Chang, Appl. Phys. Lett. 75, 1213 (2000)

    Article  ADS  Google Scholar 

  5. H.D. Li, S.F. Yu, S.P. Lau, E.S.P. Leong, Appl. Phys. Lett. 89, 021110 (2006)

    Article  ADS  Google Scholar 

  6. E.V. Chelnokov, N. Bityurin, I. Ozerov, W. Marine, Appl. Phys. Lett. 89, 171119 (2006)

    Article  ADS  Google Scholar 

  7. R.M. Nyffenegger, B. Craft, M. Shaaban, S. Gorer, G. Erley, R.M. Penner, Chem. Mater. 10, 1120 (1998)

    Article  Google Scholar 

  8. P. Hoyer, H. Weller, Chem. Phys. Lett. 221, 379 (1994)

    Article  ADS  Google Scholar 

  9. S.A. Studenikin, N. Golego, M. Cocivera, J. Appl. Phys. 84, 2287 (1998)

    Article  ADS  Google Scholar 

  10. A. Ortiz, C. Falcony, J. Hernandez, A.M. Garcua, J.C. Alonso, Thin Solid Films 293, 103 (1997)

    Article  Google Scholar 

  11. L. Vasanelli, A. Valentini, A. Losacco, Sol. Energ. Mater. 16, 91 (1987)

    Article  Google Scholar 

  12. Y. Sato, S. Sato, Thin Solid Films 281, 445 (1996)

    Article  Google Scholar 

  13. T. Maruyama, J. Shionoya, J. Mater. Sci. Lett. 11, 170 (1992)

    Article  Google Scholar 

  14. J. Ma, F. Ji, H.-L. Ma, S. Li, Thin Solid Films 279, 213 (1996)

    Article  Google Scholar 

  15. N. Izyumskaya, V. Avrutin, W. Schoch, W.A. El-Shaer, F. Reuss, T. Gruber, A. Waag, J. Cryst. Growth 269, 356 (2004)

    Article  Google Scholar 

  16. S. Choopun, R.D. Vispute, W. Noch, A. Balsamo, R.P. Sharma, T. Venkatesan, A. Iliadis, D.C. Look, Appl. Phys. Lett. 75, 3947 (1999)

    Article  ADS  Google Scholar 

  17. I. Ozerov, D. Nelson, A.V. Bulgakov, W. Marine, M. Sentis, Appl. Surf. Sci. 212, 349 (2003)

    Article  ADS  Google Scholar 

  18. I. Ozerov, M. Arab, V.I. Safarov, W. Marine, S. Giorgio, M. Sentis, L. Nanai, Appl. Surf. Sci. 226, 242 (2004)

    Article  ADS  Google Scholar 

  19. A.V. Kabashin, M. Meunier, Appl. Surf. Sci. 186, 578 (2002)

    Article  ADS  Google Scholar 

  20. A.V. Kabashin, M. Meunier, Appl. Phys. Lett. 82, 1619 (2003)

    Article  ADS  Google Scholar 

  21. A.V. Kabashin, M. Meunier, Mater. Sci. Eng. B 101, 60 (2003)

    Article  Google Scholar 

  22. D.-Q. Yang, A.V. Kabashin, V.-G. Pilon-Marien, E. Sacher, M. Meunier, J. Appl. Phys. 95, 5722 (2004)

    Article  ADS  Google Scholar 

  23. F.V. Bunkin, V.I. Konov, A.M. Prokhorov, V.B. Fedorov, JTP Lett. 9, 371 (1969)

    ADS  Google Scholar 

  24. A.J. Pedraza, J.D. Fowlkes, D.H. Lowndes, Appl. Phys. Lett. 74, 2322 (1999)

    Article  ADS  Google Scholar 

  25. A.V. Kabashin, J.-P. Sylvestre, S. Patskovsky, M. Meunier, J. Appl. Phys. 91, 3248 (2002)

    Article  ADS  Google Scholar 

  26. T.-H. Her, R.J. Finlay, C. Wu, S. Deliwala, E. Mazur, Appl. Phys. Lett. 73, 1673 (1998)

    Article  ADS  Google Scholar 

  27. Y.P. Raizer, Laser-Induced Discharge Phenomena (Consultants Bureau, New York, 1977)

    Google Scholar 

  28. A.V. Kabashin, A. Trudeau, W. Marine, M. Meunier, Appl. Phys. Lett. 91, 201101 (2007)

    Google Scholar 

  29. M.G. Drouet, H. Pepin, Appl. Phys. Lett. 28, 426 (1976)

    Article  ADS  Google Scholar 

  30. V.V. Korobkin, R.V. Serov, Pisma Zh. Eksp. Teor. Fiz. 4, 103 (1966) [see also J. Exp. Theor. Phys. Lett. 4, 70 (1966)]

    Google Scholar 

  31. A.V. Kabashin, P.I. Nikitin, Quantum Electron. 27, 536 (1997)

    Article  Google Scholar 

  32. A.V. Kabashin, P.I. Nikitin, W. Marine, M. Sentis, Appl. Phys. Lett. 73, 25 (1998)

    Article  ADS  Google Scholar 

  33. R.E. Hummel, S.-S. Chang, Appl. Phys. Lett. 61, 1965 (1992)

    Article  ADS  Google Scholar 

  34. S.-S. Chang, G.J. Choi, H.J. Park, M.E. Stora, R.E. Hummel, Mater. Sci. Eng. B 83, 29 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.V. Kabashin.

Additional information

PACS

81.16.Mk; 81.05.-t

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kabashin, A., Trudeau, A., Marine, W. et al. Exciton photoluminescence from ZnO layers produced by laser-induced gas breakdown processing. Appl. Phys. A 91, 621–625 (2008). https://doi.org/10.1007/s00339-008-4484-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4484-4

Keywords

Navigation