Skip to main content
Log in

Integrating Al with NiO nano honeycomb to realize an energetic material on silicon substrate

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nano energetic materials offer improved performance in energy release, ignition, and mechanical properties compared to their bulk or micro counterparts. In this study, the authors propose an approach to synthesize an Al/NiO based nano energetic material which is fully compatible with a microsystem. A two-dimensional NiO nano honeycomb is first realized by thermal oxidation of a Ni thin film deposited onto a silicon substrate by thermal evaporation. Then the NiO nano honeycomb is integrated with an Al that is deposited by thermal evaporation to realize an Al/NiO based nano energetic material. This approach has several advantages over previous investigations, such as lower ignition temperature, enhanced interfacial contact area, reduced impurities and Al oxidation, tailored dimensions, and easier integration into a microsystem to realize functional devices. The synthesized Al/NiO based nano energetic material is characterized by scanning electron microscopy, X-ray diffraction, differential thermal analysis, and differential scanning calorimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A.W. Miziolek, Nanoenergetics: an emerging technology area of national importance. AMPTIAC 6(1), 43–48 (2002)

    Google Scholar 

  2. C. Rossi, K. Zhang, D. Estève, P. Alphonse, J.Y.C. Ching, P. Tailhades, C. Vahlas, Nano energetic materials for MEMS: a review. J. Microelectromech. Syst. 16(4), 919–931 (2007)

    Article  Google Scholar 

  3. J.J. Granier, M.L. Pantoya, Laser ignition of nanocomposite thermites. Combust. Flame 138(4), 373–383 (2004)

    Article  Google Scholar 

  4. B.S. Bockmon, M.L. Pantoya, S.F. Son, B.W. Asay, J.T. Mang, Combustion velocities and propagation mechanisms of metastable interstitial composites. J. Appl. Phys. 98(6), 06490/1–7 (2005)

    Article  Google Scholar 

  5. A. Prakash, A.V. McCormick, M.R. Zachariah, Synthesis and reactivity of a super-reactive metastable intermolecular composite formulation of Al/KMnO4. Adv. Mater. 17(7), 900–903 (2005)

    Article  Google Scholar 

  6. T.M. Tillotson, A.E. Gash, R.L. Simpson, L.W. Hrubesh, J.H. Satcher Jr., J.F. Poco, Nanostructured energetic materials using sol-gel methodologies. J. Non-Cryst. Solids 285, 338–345 (2001)

    Article  ADS  Google Scholar 

  7. A. Prakash, A.V. McCormick, M.R. Zachariah, Tuning the reactivity of energetic nanoparticles by creation of a core-shell nanostructure. Nano Lett. 5(7), 1357–1360 (2005)

    Article  Google Scholar 

  8. J.D. Ferguson, K.J. Buechler, A.W. Weimer, S.M. George, SnO2 atomic layer deposition on ZrO2 and Al nanoparticles: pathway to enhanced thermite materials. Powder Technol. 156(2–3), 154–163 (2005)

    Article  Google Scholar 

  9. K.J. Blobaum, M.E. Reiss, J.M.P. Lawrence, T.P. Weihs, Deposition and characterization of a self-propagating CuOx/Al thermite reaction in a multilayer foil geometry. J. Appl. Phys. 94(5), 2915–2922 (2003)

    Article  ADS  Google Scholar 

  10. A. Hofmann, H. Laucht, D. Kovalev, V.Y. Timoshenko, J. Diener, N. Kunzner, E. Gross, Explosive composition and its use. US Patent 6 984 274, Jan. 10, 2006

  11. L. Menon, S. Patibandla, K. Bhargava Ram, S.I. Shkuratov, D. Aurongzeb, M. Holtz, J. Berg, J. Yun, H. Temkin, Ignition studies of Al/Fe2O3 energetic nanocomposites. Appl. Phys. Lett. 84(23), 4737 (2004)

    Article  ADS  Google Scholar 

  12. S.H. Kim, M.R. Zachariah, Enhancing the rate of energy release from nanoenergetic materials by electrostatically enhanced assembly. Adv. Mater. 16(20), 1821–1825 (2004)

    Article  Google Scholar 

  13. S. Apperson, R.V. Shende, S. Subramanian, D. Tappmeyer, S. Gangopadhyay, Z. Chen, K. Gangopadhyay, P. Redner, S. Nicholich, D. Kapoor, Generation of fast propagating combustion and shock waves with copper oxide/aluminum nanothermite composites. Appl. Phys. Lett. 91, 243109 (2007)

    Article  ADS  Google Scholar 

  14. K. Zhang, C. Rossi, C. Tenailleau, P. Alphonse, G.A.A. Rodriguez, Development of a nano Al/CuO based energetic material on silicon substrate. Appl. Phys. Lett. 91(11), 113117 (2007)

    Article  ADS  Google Scholar 

  15. M.L. Pantoya, J.J. Granier, Combustion behavior of highly energetic thermites: nano versus micron composites. Propellants Explos. Pyrotech. 30(1), 53–62 (2005)

    Article  Google Scholar 

  16. O.B. Kubaschewski, C.B. Alcock, P.J. Spencer, Materials Thermochemistry, 6th edn. (Pergamon, Elmsford, 1993)

    Google Scholar 

  17. K. Zhang, C. Rossi, P. Alphonse, C. Tenailleau, NiO nano honeycomb realized by annealing Ni film deposited on silicon. J. Nanosci. Nanotech. (Accepted on Nov. 22, 2007)

  18. T.W. Barbee, R.L. Simpson, A.E. Gash, J.H. Satcher, Nano-laminate-based ignitors. US Patent WO 2005 016850 A2, Feb. 24, 2005

  19. K. Zhang, C. Rossi, M. Petrantoni, N. Mauran, A nano initiator realized by integrating Al/CuO-based nanoenergetic materials with a Au/Pt/Cr microheater. J. Microelectromech. Syst. 16(4), 832–836 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaili Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, K., Rossi, C., Alphonse, P. et al. Integrating Al with NiO nano honeycomb to realize an energetic material on silicon substrate. Appl. Phys. A 94, 957–962 (2009). https://doi.org/10.1007/s00339-008-4875-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4875-6

PACS

Navigation