Skip to main content
Log in

Effect of multimodal coupling in imaging micro-endoscopic fiber bundle on optical coherence tomography

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The effect of higher-order modes in fiber bundle imager-based optical coherence tomography (OCT) has been theoretically modeled using coupled fiber mode analysis ignoring the polarization and core size variation in order to visualize the pure effect of multimodal coupling of the imaging bundle. In this model, the optical imaging fiber couples several higher-order modes in addition to the fundamental one due to its high numerical aperture for achieving light confinement to the single core pixel. Those modes become evident in a distance domain using A-mode (depth) OCT based on a mirror sample experiment where multiple peaks are generated by the spatial convolution and coherence function of the light source. The distance between the peaks corresponding to each mode can be estimated by considering the effective indices of coupled (guided) modes obtained from numerically solving the fiber mode characteristics equations and the fiber length. The results have been compared for various types (fiber dimensions and wavelengths) and lengths of fibers, which have mode separation of 715 μm (1404 μm) and 764 μm (1527 μm) for the measurement and analysis, respectively in a 152.5 mm (305 mm)-long imaging fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P.M. Lane, A.L.P. Dlugan, R. Richards-Kortum, C.E. MacAulay, Opt. Lett. 25, 1780 (2000)

    Article  ADS  Google Scholar 

  2. A.F. Gmitro, D. Aziz, Opt. Lett. 18, 565 (1993)

    Article  ADS  Google Scholar 

  3. W. Göbel, J.N.D. Jerr, A. Nimmerjahn, F. Helmchen, Opt. Lett. 29, 2521 (2004)

    Article  ADS  Google Scholar 

  4. B.A. Flusberg, E.D. Cocker, W. Piyawattanametha, J.C. Jung, E.L.M. Cheung, M.J. Schnitzer, Nat. Methods 2, 941 (2005)

    Article  Google Scholar 

  5. J.W. Pyhtila, J.D. Boyer, K.J. Chalut, A. Wax, Opt. Lett. 31, 772 (2006)

    Article  ADS  Google Scholar 

  6. J.L. Lázaro, P.R. Fernández, A. Gardel, A.E. Cano, C.A. Luna, Sensors 9, 8215 (2009)

    Article  Google Scholar 

  7. A.D. Gift, J. Ma, K.S. Haber, B.L. McClain, D. Den-Amotz, J. Raman Spectrosc. 30, 757 (1999)

    Article  ADS  Google Scholar 

  8. H.D. Ford, R.P. Tatam, Appl. Opt. 50, 627 (2011)

    Article  ADS  Google Scholar 

  9. J.-H. Han, X. Liu, C.G. Song, J.U. Kang, Electron. Lett. 45, 1110 (2009)

    Article  Google Scholar 

  10. D. Oron, E. Tal, Y. Silberberg, Opt. Express 13, 1468 (2005)

    Article  ADS  Google Scholar 

  11. J.-A. Spitz, R. Yasukuni, N. Sandeau, M. Takano, J.-J. Vachon, R. Meallet-Renault, R.B. Pansu, J. Microsc. 229, 104 (2008)

    Article  MathSciNet  Google Scholar 

  12. W. Göbel, J.N. Kerr, A. Nimmerjahn, F. Helmchen, Opt. Lett. 29, 2521 (2004)

    Article  ADS  Google Scholar 

  13. K.-B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, R. Richards-Kortum, IEEE Trans. Biomed. Eng. 49, 1168 (2002)

    Article  Google Scholar 

  14. B.A. Flusberg, A. Nimmerjahn, E.D. Cocker, E.A. Mukamel, R.P.J. Barretto, T.H. Ko, L.D. Burns, J.C. Jung, M.J. Schnitzer, Nat. Methods 5, 935 (2008)

    Article  Google Scholar 

  15. H.D. Ford, R.P. Tatam, Meas. Sci. Technol. 18, 2949 (2007)

    Article  ADS  Google Scholar 

  16. W. Wang, K. Zhang, Q. Ren, J.U. Kang, Opt. Eng. 48, 103001 (2009)

    Article  ADS  Google Scholar 

  17. K.L. Reichenbach, C. Xu, Opt. Express 15, 2151 (2007)

    Article  ADS  Google Scholar 

  18. J. Sun, Q. Huang, J.A. Gilbert, Appl. Opt. 34, 1536 (1995)

    Article  ADS  Google Scholar 

  19. N. Ortega-Quijano, F. Fanjul-Vélez, J.L. Arce-Diego, Opt. Commun. 283, 633 (2010)

    Article  ADS  Google Scholar 

  20. T. Xie, D. Mukai, S. Guo, M. Brenner, Z. Chen, Opt. Lett. 30, 1803 (2005)

    Article  ADS  Google Scholar 

  21. X. Chen, K.L. Reichenbach, C. Xu, Opt. Express 16, 21598 (2008)

    Article  ADS  Google Scholar 

  22. K. Iizuka, Elements of Photonics: For Fiber and Integrated Optics (Wiley, New York, 2002)

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to thank K. Zhang and I.K. Ilev for their technical support regarding this work. This research was supported by World Class University program funded by the Ministry of Education, Science, and Technology through the National Research Foundation of Korea (R31-10008). This research was also supported in part by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0010823). This work was supported in part by National Institute of Health (NIH) grant BRP 1R01 EB 007969-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-H. Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, JH., Kang, J.U. Effect of multimodal coupling in imaging micro-endoscopic fiber bundle on optical coherence tomography. Appl. Phys. B 106, 635–643 (2012). https://doi.org/10.1007/s00340-011-4847-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-011-4847-y

Keywords

Navigation