Skip to main content

Advertisement

Log in

Role of FGFR3 in urothelial cell carcinoma: biomarker and potential therapeutic target

  • Topic Paper
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Although non-invasive bladder tumours (pTa) are the most common group of bladder tumours at presentation, there has until recently been relatively little information on their molecular biology. Thus it was of great interest when mutations in the FGF receptor 3 (FGFR3) were identified in bladder tumours and it became apparent that these were most common in tumours of low grade and stage. Since the initial description of activating mutations of FGFR3, there have been numerous studies confirming the frequency and spectrum of these mutations in bladder cancers of all grades and stages. Mutation screening techniques have evolved and improved. FGFR3 mutation has been assessed as a predictive biomarker in tumour tissues and as a diagnostic biomarker in urine. Efforts have been made to understand the function of FGFR3 in urothelial and other cells. Although our understanding of FGFR3 function is incomplete, it is already apparent that this may represent an important therapeutic target not only in non-invasive bladder cancer but also in a significant number of invasive tumours. This review summarises the current state of knowledge of this interesting receptor in urothelial carcinoma (UC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Johnson DE, Williams LT (1993) Structural and functional diversity in the FGF receptor multigene family. Adv Cancer Res 60:1–41

    Article  PubMed  CAS  Google Scholar 

  2. Avivi A, Yayon A, Givol D (1993) A novel form of FGF receptor-3 using an alternative exon in the immunoglobulin domain III. FEBS Lett 330:249–252

    Article  PubMed  CAS  Google Scholar 

  3. Ornitz DM, Xu J, Colvin JS et al (1996) Receptor specificity of the fibroblast growth factor family. J Biol Chem 271:15292–15297

    Article  PubMed  CAS  Google Scholar 

  4. Werner S, Duan DS, de Vries C, Peters KG, Johnson DE, Williams LT (1992) Differential splicing in the extracellular region of fibroblast growth factor receptor 1 generates receptor variants with different ligand-binding specificities. Mol Cell Biol 12:82–88

    PubMed  CAS  Google Scholar 

  5. Chellaiah AT, McEwen DG, Werner S, Xu J, Ornitz DM (1994) Fibroblast growth factor receptor (FGFR) 3. Alternative splicing in immunoglobulin-like domain III creates a receptor highly specific for acidic FGF/FGF-1. J Biol Chem 269:11620–11627

    PubMed  CAS  Google Scholar 

  6. Passos-Bueno MR, Wilcox WR, Jabs EW, Sertie AL, Alonso LG, Kitoh H (1999) Clinical spectrum of fibroblast growth factor receptor mutations. Hum Mutat 14:115–125

    Article  PubMed  CAS  Google Scholar 

  7. Chen L, Li C, Qiao W, Xu X, Deng C (2001) A Ser(365)->Cys mutation of fibroblast growth factor receptor 3 in mouse downregulates Ihh/PTHrP signals and causes severe achondroplasia. Hum Mol Genet 10:457–465

    Article  PubMed  CAS  Google Scholar 

  8. Colvin JS, Bohne BA, Harding GW, McEwen DG, Ornitz DM (1996) Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat Genet 12:390–397

    Article  PubMed  CAS  Google Scholar 

  9. Cappellen D, De Oliveira C, Ricol D et al (1999) Frequent activating mutations of FGFR3 in human bladder and cervix carcinomas. Nat Genet 23:18–20

    PubMed  CAS  Google Scholar 

  10. Bakkar AA, Wallerand H, Radvanyi F et al (2003) FGFR3 and TP53 gene mutations define two distinct pathways in urothelial cell carcinoma of the bladder. Cancer Res 63:8108–8112

    PubMed  CAS  Google Scholar 

  11. Billerey C, Chopin D, Aubriot-Lorton MH et al (2001) Frequent FGFR3 mutations in papillary non-invasive bladder (pTa) tumors. Am J Pathol 158:1955–1959

    PubMed  CAS  Google Scholar 

  12. Hernandez S, Lopez-Knowles E, Lloreta J et al (2005) FGFR3 and Tp53 mutations in T1G3 transitional bladder carcinomas: independent distribution and lack of association with prognosis. Clin Cancer Res 11:5444

    Article  PubMed  CAS  Google Scholar 

  13. Kimura T, Suzuki H, Ohashi T, Asano K, Kiyota H, Eto Y (2001) The incidence of thanatophoric dysplasia mutations in FGFR3 gene is higher in low-grade or superficial bladder carcinomas. Cancer 92:2555–2561

    Article  PubMed  CAS  Google Scholar 

  14. Rieger-Christ KM, Mourtzinos A, Lee PJ et al (2003) Identification of fibroblast growth factor receptor 3 mutations in urine sediment DNA samples complements cytology in bladder tumor detection. Cancer 98:737–744

    Article  PubMed  CAS  Google Scholar 

  15. Sibley K, Cuthbert-Heavens D, Knowles MA (2001) Loss of heterozygosity at 4p16.3 and mutation of FGFR3 in transitional cell carcinoma. Oncogene 20:686–691

    Article  PubMed  CAS  Google Scholar 

  16. van Rhijn BW, Lurkin I, Chopin DK et al (2003) Combined microsatellite and FGFR3 mutation analysis enables a highly sensitive detection of urothelial cell carcinoma in voided urine. Clin Cancer Res 9:257–263

    PubMed  Google Scholar 

  17. van Rhijn BW, Lurkin I, Radvanyi F, Kirkels WJ, van der Kwast TH, Zwarthoff EC (2001) The fibroblast growth factor receptor 3 (FGFR3) mutation is a strong indicator of superficial bladder cancer with low recurrence rate. Cancer Res 61:1265–8

    PubMed  Google Scholar 

  18. van Rhijn BW, Montironi R, Zwarthoff EC, Jobsis AC, van der Kwast TH (2002) Frequent FGFR3 mutations in urothelial papilloma. J Pathol 198:245–251

    Article  PubMed  CAS  Google Scholar 

  19. van Rhijn BW, van Tilborg AA, Lurkin I et al (2002) Novel fibroblast growth factor receptor 3 (FGFR3) mutations in bladder cancer previously identified in non-lethal skeletal disorders. Eur J Hum Genet 10:819–824

    Article  PubMed  CAS  Google Scholar 

  20. van Rhijn BW, Vis AN, van der Kwast TH et al (2003) Molecular grading of urothelial cell carcinoma with fibroblast growth factor receptor 3 and MIB-1 is superior to pathologic grade for the prediction of clinical outcome. J Clin Oncol 21:1912–1921

    Article  PubMed  CAS  Google Scholar 

  21. Wallerand H, Bakkar AA, de Medina SG et al (2005) Mutations in TP53, but not FGFR3, in urothelial cell carcinoma of the bladder are influenced by smoking: contribution of exogenous versus endogenous carcinogens. Carcinogenesis 26:177

    Article  PubMed  CAS  Google Scholar 

  22. WHO (2004) WHO classification tumours of the urinary system and male genital organs. IARC Press, Lyon

    Google Scholar 

  23. Adar R, Monsonego-Ornan E, David P, Yayon A (2002) Differential activation of cysteine-substitution mutants of fibroblast growth factor receptor 3 is determined by cysteine localization. J Bone Miner Res 17:860–868

    Article  PubMed  CAS  Google Scholar 

  24. Hernandez S, Lopez-Knowles E, Lloreta J et al (2006) Prospective study of FGFR3 mutations as a prognostic factor in nonmuscle invasive urothelial bladder carcinomas. J Clin Oncol 24:3664–3671

    Article  PubMed  CAS  Google Scholar 

  25. Chesi M, Brents LA, Ely SA et al (2001) Activated fibroblast growth factor receptor 3 is an oncogene that contributes to tumor progression in multiple myeloma. Blood 97:729–736

    Article  PubMed  CAS  Google Scholar 

  26. Wu R, Connolly D, Ngelangel C, Bosch FX, Munoz N, Cho KR (2000) Somatic mutations of fibroblast growth factor receptor 3 (FGFR3) are uncommon in carcinomas of the uterine cervix. Oncogene 19:5543–5546

    Article  PubMed  CAS  Google Scholar 

  27. Karoui M, Hofmann-Radvanyi H, Zimmermann U et al (2001) No evidence of somatic FGFR3 mutation in various types of carcinoma. Oncogene 20:5059–5061

    Article  PubMed  CAS  Google Scholar 

  28. Naimi B, Latil A, Berthon P, Cussenot O (2000) No evidence for fibroblast growth factor receptor 3 (FGFR-3) R248C/S249C mutations in human prostate cancer. Int J Cancer 87:455–456

    Article  PubMed  CAS  Google Scholar 

  29. Sibley K, Stern P, Knowles MA (2001) Frequency of fibroblast growth factor receptor 3 mutations in sporadic tumours. Oncogene 20:4416–4418

    Article  PubMed  CAS  Google Scholar 

  30. Jang JH, Shin KH, Park JG (2001) Mutations in fibroblast growth factor receptor 2 and fibroblast growth factor receptor 3 genes associated with human gastric and colorectal cancers. Cancer Res 61:3541–3543

    PubMed  CAS  Google Scholar 

  31. Zhang Y, Hiraishi Y, Wang H et al (2005) Constitutive activating mutation of the FGFR3b in oral squamous cell carcinomas. Int J Cancer 117:166–168

    Article  PubMed  CAS  Google Scholar 

  32. Aubertin J, Tourpin S, Janot F, Ahomadegbe JC, Radvanyi F (2007) Analysis of fibroblast growth factor receptor 3 G697C mutation in oral squamous cell carcinomas. Int J Cancer 120:2058–2059; author reply 60

    Article  PubMed  CAS  Google Scholar 

  33. Hafner C, van Oers JM, Hartmann A et al (2006) High frequency of FGFR3 mutations in adenoid seborrheic keratoses. J Invest Dermatol 126:2404–2407

    Article  PubMed  CAS  Google Scholar 

  34. Logie A, Dunois-Larde C, Rosty C et al (2005) Activating mutations of the tyrosine kinase receptor FGFR3 are associated with benign skin tumors in mice and humans. Hum Mol Genet 14:1153

    Article  PubMed  CAS  Google Scholar 

  35. Hafner C, van Oers JM, Vogt T et al (2006) Mosaicism of activating FGFR3 mutations in human skin causes epidermal nevi. J Clin Invest 116:2201–2207

    Article  PubMed  CAS  Google Scholar 

  36. van Oers JM, Lurkin I, van Exsel AJ et al (2005) A simple and fast method for the simultaneous detection of nine fibroblast growth factor receptor 3 mutations in bladder cancer and voided urine. Clin Cancer Res 11:7743–7748

    Article  PubMed  CAS  Google Scholar 

  37. Bakkar AA, Quach V, Le Borgne A et al (2005) Sensitive allele-specific PCR assay able to detect FGFR3 mutations in tumors and urine from patients with urothelial cell carcinoma of the bladder. Clin Chem 51:1555

    Article  PubMed  CAS  Google Scholar 

  38. Hartmann A, Moser K, Kriegmair M, Hofstetter A, Hofstaedter F, Knuechel R (1999) Frequent genetic alterations in simple urothelial hyperplasias of the bladder in patients with papillary urothelial carcinoma (In Process Citation). Am J Pathol 154:721–727

    PubMed  CAS  Google Scholar 

  39. Obermann EC, Junker K, Stoehr R et al (2003) Frequent genetic alterations in flat urothelial hyperplasias and concomitant papillary bladder cancer as detected by CGH, LOH, and FISH analyses. J Pathol 199:50–57

    Article  PubMed  CAS  Google Scholar 

  40. Cairns P, Shaw ME, Knowles MA (1993) Initiation of bladder cancer may involve deletion of a tumour-suppressor gene on chromosome 9. Oncogene 8:1083–1085

    PubMed  CAS  Google Scholar 

  41. Chow NH, Cairns P, Eisenberger CF et al (2000) Papillary urothelial hyperplasia is a clonal precursor to papillary transitional cell bladder cancer. Int J Cancer 89:514–518

    Article  PubMed  CAS  Google Scholar 

  42. van Oers JM, Adam C, Denzinger S et al (2006) Chromosome 9 deletions are more frequent than FGFR3 mutations in flat urothelial hyperplasias of the bladder. Int J Cancer 119:1212–1215

    Article  PubMed  CAS  Google Scholar 

  43. Tomlinson D, Baldo O, Knowles MA (2007) FGFR3 protein expression and its relationship to mutation status and prognostic variables in bladder cancer. J Pathol 213:91–98

    Article  PubMed  CAS  Google Scholar 

  44. van Rhijn BW, van der Kwast TH, Vis AN et al (2004) FGFR3 and P53 characterize alternative genetic pathways in the pathogenesis of urothelial cell carcinoma. Cancer Res 64:1911–1914

    Article  PubMed  Google Scholar 

  45. Lamy A, Gobet F, Laurent M et al (2006) Molecular profiling of bladder tumors based on the detection of FGFR3 and TP53 mutations. J Urol 176:2686–2689

    Article  PubMed  CAS  Google Scholar 

  46. Knowles MA (2006) Molecular subtypes of bladder cancer: Jekyll and Hyde or chalk and cheese? Carcinogenesis 27:361–373

    Article  PubMed  CAS  Google Scholar 

  47. Esrig D, Spruck CHd, Nichols PW et al (1993) p53 nuclear protein accumulation correlates with mutations in the p53 gene, tumor grade, and stage in bladder cancer. Am J Pathol 143:1389–1397

    PubMed  CAS  Google Scholar 

  48. Mhawech-Fauceglia P, Cheney RT, Fischer G, Beck A, Herrmann FR (2006) FGFR3 and p53 protein expressions in patients with pTa and pT1 urothelial bladder cancer. Eur J Surg Oncol 32:231–237

    Article  PubMed  CAS  Google Scholar 

  49. Richter J, Jiang F, Gorog JP et al (1997) Marked genetic differences between stage pTa and stage pT1 papillary bladder cancer detected by comparative genomic hybridization. Cancer Res 57:2860–2864

    PubMed  CAS  Google Scholar 

  50. Dalbagni G (2007) The management of superficial bladder cancer. Nat Clin Pract Urol 4:254–60

    Article  PubMed  Google Scholar 

  51. Hart KC, Robertson SC, Kanemitsu MY, Meyer AN, Tynan JA, Donoghue DJ (2000) Transformation and Stat activation by derivatives of FGFR1, FGFR3, and FGFR4. Oncogene 19:3309–3320

    Article  PubMed  CAS  Google Scholar 

  52. Jebar AH, Hurst CD, Tomlinson DC, Johnston C, Taylor CF, Knowles MA (2005) FGFR3 and Ras gene mutations are mutually exclusive genetic events in urothelial cell carcinoma. Oncogene 24:5218–5225

    Article  PubMed  CAS  Google Scholar 

  53. Lopez-Knowles E, Hernandez S, Malats N et al (2006) PIK3CA mutations are an early genetic alteration associated with FGFR3 mutations in superficial papillary bladder tumors. Cancer Res 66:7401–7404

    Article  PubMed  CAS  Google Scholar 

  54. Cairns P, Evron E, Okami K et al (1998) Point mutation and homozygous deletion of PTEN/MMAC1 in primary bladder cancers. Oncogene 16:3215–3218

    Article  PubMed  CAS  Google Scholar 

  55. Aveyard JS, Skilleter A, Habuchi T, Knowles MA (1999) Somatic mutation of PTEN in bladder carcinoma. Br J Cancer 80:904–908

    Article  PubMed  CAS  Google Scholar 

  56. Saal LH, Holm K, Maurer M et al (2005) PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma. Cancer Res 65:2554–2559

    Article  PubMed  CAS  Google Scholar 

  57. Byun DS, Cho K, Ryu BK et al (2003) Frequent monoallelic deletion of PTEN and its reciprocal associatioin with PIK3CA amplification in gastric carcinoma. Int J Cancer 104:318–327

    Article  PubMed  CAS  Google Scholar 

  58. Oda K, Stokoe D, Taketani Y, McCormick F (2005) High frequency of coexistent mutations of PIK3CA and PTEN genes in endometrial carcinoma. Cancer Res 65:10669–10673

    Article  PubMed  CAS  Google Scholar 

  59. Zieger K, Dyrskjot L, Wiuf C et al (2005) Role of activating fibroblast growth factor receptor 3 mutations in the development of bladder tumors. Clin Cancer Res 11:7709–7719

    Article  PubMed  CAS  Google Scholar 

  60. Dyrskjot L, Kruhoffer M, Thykjaer T et al (2004) Gene expression in the urinary bladder: a common carcinoma in situ gene expression signature exists disregarding histopathological classification. Cancer Res 64:4040–4048

    Article  PubMed  CAS  Google Scholar 

  61. Lindgren D, Liedberg F, Andersson A et al (2006) Molecular characterization of early-stage bladder carcinomas by expression profiles, FGFR3 mutation status, and loss of 9q. Oncogene 25:2685–2696

    Article  PubMed  CAS  Google Scholar 

  62. Tomlinson DC, L’Hote CG, Kennedy W, Pitt E, Knowles MA (2005) Alternative splicing of fibroblast growth factor receptor 3 produces a secreted isoform that inhibits fibroblast growth factor-induced proliferation and is repressed in urothelial carcinoma cell lines. Cancer Res 65:10441–10449

    Article  PubMed  CAS  Google Scholar 

  63. Murgue B, Tsunekawa S, Rosenberg I, deBeaumont M, Podolsky DK (1994) Identification of a novel variant form of fibroblast growth factor receptor 3 (FGFR3 IIIb) in human colonic epithelium. Cancer Res 54:5206–5211

    PubMed  CAS  Google Scholar 

  64. Zhang X, Ibrahimi OA, Olsen SK, Umemori H, Mohammadi M, Ornitz DM (2006) Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J Biol Chem 281:15694–15700

    Article  PubMed  CAS  Google Scholar 

  65. Jang JH (2002) Identification and characterization of soluble isoform of fibroblast growth factor receptor 3 in human SaOS-2 osteosarcoma cells. Biochem Biophys Res Commun 292:378–382

    Article  PubMed  CAS  Google Scholar 

  66. Johnston CL, Cox HC, Gomm JJ, Coombes RC (1995) Fibroblast growth factor receptors (FGFRs) localize in different cellular compartments. A splice variant of FGFR-3 localizes to the nucleus. J Biol Chem 270:30643–30650

    Article  PubMed  CAS  Google Scholar 

  67. Sturla LM, Merrick AE, Burchill SA (2003) FGFR3IIIS: a novel soluble FGFR3 spliced variant that modulates growth is frequently expressed in tumour cells. Br J Cancer 89:1276–1284

    Article  PubMed  CAS  Google Scholar 

  68. Terada M, Shimizu A, Sato N, Miyakaze SI, Katayama H, Kurokawa-Seo M (2001) Fibroblast growth factor receptor 3 lacking the Ig IIIb and transmembrane domains secreted from human squamous cell carcinoma DJM-1 binds to FGFs. Mol Cell Biol Res Commun 4:365–373

    Article  PubMed  CAS  Google Scholar 

  69. Chodak GW, Hospelhorn V, Judge SM, Mayforth R, Koeppen H, Sasse J (1988) Increased levels of fibroblast growth factor-like activity in urine from patients with bladder or kidney cancer. Cancer Res 48:2083–2088

    PubMed  CAS  Google Scholar 

  70. Chopin DK, Caruelle JP, Colombel M et al (1993) Increased immunodetection of acidic fibroblast growth factor in bladder cancer, detectable in urine. J Urol 150:1126–1130

    PubMed  CAS  Google Scholar 

  71. Gravas S, Bosinakou I, Kehayas P, Giannopoulos A (2004) Urinary basic fibroblast growth factor in bladder cancer patients. Histopathological correlation and clinical potential. Urol Int 73:173–177

    Article  PubMed  CAS  Google Scholar 

  72. O’Brien T, Cranston D, Fuggle S, Bicknell R, Harris AL (1997) Two mechanisms of basic fibroblast growth factor-induced angiogenesis in bladder cancer. Cancer Res 57:136–140

    PubMed  CAS  Google Scholar 

  73. Matsumoto M, Ohtsuki Y, Ochii K et al (2004) Fibroblast growth factor receptor 3 protein expression in urothelial carcinoma of the urinary bladder, exhibiting no association with low-grade and/or non-invasive lesions. Oncol Rep 12:967

    PubMed  CAS  Google Scholar 

  74. Gomez-Roman JJ, Saenz P, Molina M et al (2005) Fibroblast growth factor receptor 3 is overexpressed in urinary tract carcinomas and modulates the neoplastic cell growth. Clin Cancer Res 11:459

    Article  PubMed  CAS  Google Scholar 

  75. Bernard-Pierrot I, Brams A, Dunois-Larde C et al (2006) Oncogenic properties of the mutated forms of fibroblast growth factor receptor 3b. Carcinogenesis 27:740–747

    Article  PubMed  CAS  Google Scholar 

  76. Malats N, Bustos A, Nascimento CM et al (2005) P53 as a prognostic marker for bladder cancer: a meta-analysis and review. Lancet Oncol 6:678–686

    Article  PubMed  CAS  Google Scholar 

  77. Buscarini M, Quek ML, Gill P, Xia G, Quinn DI, Stein JP (2005) Molecular prognostic factors in bladder cancer. BJU Int 95:739–742

    Article  PubMed  Google Scholar 

  78. Ooms EC, Anderson WA, Alons CL, Boon ME, Veldhuizen RW (1983) Analysis of the performance of pathologists in the grading of bladder tumors. Hum Pathol 14:140–143

    Article  PubMed  CAS  Google Scholar 

  79. Tosoni I, Wagner U, Sauter G et al (2000) Clinical significance of interobserver differences in the staging and grading of superficial bladder cancer. BJU Int 85:48–53

    Article  PubMed  CAS  Google Scholar 

  80. Harnden P, Mahmood N, Southgate J (1999) Expression of cytokeratin 20 redefines urothelial papillomas of the bladder. Lancet 353:974–977

    Article  PubMed  CAS  Google Scholar 

  81. van Oers JM, Wild PJ, Burger M et al (2007) FGFR3 Mutations and a Normal CK20 Staining Pattern Define Low-Grade Noninvasive Urothelial Bladder Tumours. Eur Urol 52(3):760–768

    Article  PubMed  Google Scholar 

  82. Botteman MF, Pashos CL, Redaelli A, Laskin B, Hauser R (2003) The health economics of bladder cancer: a comprehensive review of the published literature. Pharmacoeconomics 21:1315–1330

    Article  PubMed  Google Scholar 

  83. Sangar VK, Ragavan N, Matanhelia SS, Watson MW, Blades RA (2005) The economic consequences of prostate and bladder cancer in the UK. BJU Int 95:59–63

    Article  PubMed  Google Scholar 

  84. Bastacky S, Ibrahim S, Wilczynski SP, Murphy WM (1999) The accuracy of urinary cytology in daily practice. Cancer 87:118–128

    Article  PubMed  CAS  Google Scholar 

  85. van Rhijn BW, van der Poel HG, van der Kwast TH (2005) Urine markers for bladder cancer surveillance: a systematic review. Eur Urol 47:736–748

    Article  PubMed  CAS  Google Scholar 

  86. Lokeshwar VB, Soloway MS (2001) Current bladder tumor tests: does their projected utility fulfill clinical necessity? J Urol 165:1067–1077

    Article  PubMed  CAS  Google Scholar 

  87. Steiner G, Schoenberg MP, Linn JF, Mao L, Sidransky D (1997) Detection of bladder cancer recurrence by microsatellite analysis of urine. Nat Med 3:621–624

    Article  PubMed  CAS  Google Scholar 

  88. Hoque MO, Lee J, Begum S et al (2003) High-throughput molecular analysis of urine sediment for the detection of bladder cancer by high-density single-nucleotide polymorphism array. Cancer Res 63:5723–5726

    PubMed  CAS  Google Scholar 

  89. Schneider A, Borgnat S, Lang H et al (2000) Evaluation of microsatellite analysis in urine sediment for diagnosis of bladder cancer. Cancer Res 60:4617–4622

    PubMed  CAS  Google Scholar 

  90. Chen J, Williams IR, Lee BH et al (2005) Constitutively activated FGFR3 mutants signal through PLC{gamma}-dependent and -independent pathways for hematopoietic transformation. Blood 106:328–337

    Article  PubMed  CAS  Google Scholar 

  91. Grand EK, Chase AJ, Heath C, Rahemtulla A, Cross NC (2004) Targeting FGFR3 in multiple myeloma: inhibition of t(4;14)-positive cells by SU5402 and PD173074. Leukemia 18:962–966

    Article  PubMed  CAS  Google Scholar 

  92. Trudel S, Ely S, Farooqi Y et al (2004) Inhibition of fibroblast growth factor receptor 3 induces differentiation and apoptosis in t(4;14) myeloma. Blood 103:3521–3528

    Article  PubMed  CAS  Google Scholar 

  93. Trudel S, Li ZH, Wei E et al (2005) CHIR-258, a novel, multitargeted tyrosine kinase inhibitor for the potential treatment of t(4;14) multiple myeloma. Blood 105:2941

    Article  PubMed  CAS  Google Scholar 

  94. Trudel S, Stewart AK, Rom E et al (2006) The inhibitory anti-FGFR3 antibody, PRO-001, is cytotoxic to t(4;14) multiple myeloma cells. Blood 107:4039–4046

    Article  PubMed  CAS  Google Scholar 

  95. Tomlinson DC, Hurst CD, Knowles MA (2007) Knockdown by shRNA identifies S249C mutant FGFR3 as a potential therapeutic target in bladder cancer. Oncogene 26:5889–5899

    Article  PubMed  CAS  Google Scholar 

  96. Weinstein IB (2002) Cancer. Addiction to oncogenes—the Achilles heal of cancer. Science 297:63–64

    Article  PubMed  CAS  Google Scholar 

  97. Mohammadi M, McMahon G, Sun L et al (1997) Structures of the tyrosine kinase domain of fibroblast growth factor receptor in complex with inhibitors. Science 276:955–960

    Article  PubMed  CAS  Google Scholar 

  98. Martinez-Torrecuadrada J, Cifuentes G, Lopez-Serra P, Saenz P, Martinez A, Casal JI (2005) Targeting the extracellular domain of fibroblast growth factor receptor 3 with human single-chain Fv antibodies inhibits bladder carcinoma cell line proliferation. Clin Cancer Res 11:6280–6290

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I am indebted to all members of my laboratory who have contributed to our work on FGF receptors, particularly to Darren Tomlinson, Wendy Kennedy, Carolyn Hurst, Erica di Martino and Fiona Lamont and to Patricia Harnden for her expert support in histopathology. Work on FGFRs in this laboratory is funded by Cancer Research UK and the Association for International Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret A. Knowles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knowles, M.A. Role of FGFR3 in urothelial cell carcinoma: biomarker and potential therapeutic target. World J Urol 25, 581–593 (2007). https://doi.org/10.1007/s00345-007-0213-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-007-0213-4

Keywords

Navigation