Skip to main content
Log in

Impact of hindered Brownian diffusion on the accuracy of particle-image velocimetry using evanescent-wave illumination

  • Original
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The “nano-particle image velocimetry” technique uses evanescent-wave illumination generated by total internal reflection at the wall to excite colloidal neutrally buoyant fluorescent tracer particles. The displacement of these particles over time as they are convected by the flow then gives the flow velocity components tangential to the wall. Since the extent of the illumination region normal to the wall is comparable to the particle diameter, a major source of error in this technique is particle “mismatch” within a pair of images due to Brownian diffusion causing a particle to move in to or out of the illuminated region. The “brightness” (proportional to the amount of imaged fluorescence) and size of individual particle images in nPIV data are discussed. A sequence of artificial nPIV images are generated for a known uniform velocity field with the particles subject to hindered Brownian diffusion. The velocity fields calculated from these artificial images are compared with the known velocity field to determine the effect of Brownian diffusion-induced particle mismatch on nPIV accuracy. A similar analysis is carried out for experimental nPIV images. The results provide design guidance for experimental measurements using the nPIV technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adrian RJ (1991) Particle-imaging techniques for experimental fluid mechanics. Ann Rev Fluid Mech 23:261–304

    Google Scholar 

  • Axelrod D (2001) Total internal reflection fluorescence microscopy in cell biology. Traffic 2:764–774

    Article  CAS  PubMed  Google Scholar 

  • Bevan MA, Prieve DC (2000) Hindered diffusion of colloidal particles very near to a wall: revisited. J Chem Phys 113:1228–1236

    Article  CAS  Google Scholar 

  • Bourdon CJ, Olsen MG, Gorby AD (2004) Validation of an analytical solution for depth of correlation in microscopic particle image velocimetry. Meas Sci Technol 15:318–327

    Article  CAS  Google Scholar 

  • Clark AT, Lal M, Watson GM (1987) Dynamics of colloidal particles in vicinity of an interacting surface. Faraday Discuss Chem Soc 83:179–191

    Article  CAS  Google Scholar 

  • Einstein A (1905) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann Phys 17:549

    CAS  Google Scholar 

  • Faxén H (1922) Der Widerstand gegen die Bewegung einer starren Kugel in einer zähen Flüssigkeit, die zwischen zwei parallelen Ebenen Wänden eingeschlossen ist. Ann Phys 4(68):89–119

    Google Scholar 

  • Haertig J, Havermann M, Rey C, George A (2002) Particle image velocimetry in Mach 3.5 and 4.5 shock-tunnel flow. AIAA J 40:1056–1060

    Google Scholar 

  • Liang DF, Jiang CB, Li YL (2002) A combination correlation-based interrogation and tracking algorithm for digital PIV evaluation. Exp Fluids 33:684–695

    Google Scholar 

  • Meinhart CD, Wereley ST (2003) The theory of diffraction-limited resolution in micro-particle image velocimetry. Meas Sci Technol 14:1047–1053

    Article  CAS  Google Scholar 

  • Meinhart CD, Wereley ST, Gray MHB (2000a) Volume illumination for two-dimensional particle image velocimetry. Meas Sci Technol 11:809–814

    Article  CAS  Google Scholar 

  • Meinhart CD, Wereley ST, Santiago JG (1999) PIV measurement of a microchannel flow. Exp Fluids 27:414–419

    Article  Google Scholar 

  • Meinhart CD, Wereley ST, Santiago JG (2000b) A PIV algorithm for estimating time-averaged velocity fields. Trans ASME: J Fluids Eng 122:285–289

    Google Scholar 

  • Olsen MG, Adrian RJ (2000a) Out-of-focus effects on particle image visibility and correlation in microscopic particle image velocimetry. Exp Fluids 29:S166–S174

    Article  Google Scholar 

  • Olsen MG, Adrian RJ (2000b) Brownian motion and correlation in particle image velocimetry. Opt Laser Technol 32:621–627

    Article  CAS  Google Scholar 

  • Olsen MG, Bourdon CJ (2003) Out-of-plane motion effects in microscopic particle image velocimetry. J Fluids Eng 125:895–901

    Article  Google Scholar 

  • Raffel M, Willert C, Kompenhans J (1998) Particle image velocimetry; a practical guide. Springer, Berlin Heidelberg New York

  • Sadr R, Yoda M, Zheng Z, Conlisk AT (2004) An experimental study of electro-osmotic flow in rectangular microchannels. J Fluid Mech 506:357–367

    Article  CAS  Google Scholar 

  • Santiago JG, Wereley ST, Meinhart CD, Beebe DJ, Adrian RJ (1998) Particle image velocimetry system for microfluidics. Exp Fluids 25:316–319

    Article  CAS  Google Scholar 

  • Tretheway DC, Meinhart CD (2002) Apparent fluid slip at hydrophobic microchannel walls. Phys Fluids 14:L9–L12

    Article  CAS  Google Scholar 

  • Wereley ST, Gui L, Meinhart CD (2002) Advanced algorithms for microscale particle image velocimetry. AIAA J 40:1047–1055

    Google Scholar 

  • Westerweel J (2000) Theoretical analysis of the measurement precision in particle image velocimetry. Exp Fluids 29:S3–S12

    Article  Google Scholar 

  • Zettner CM, Yoda M (2003) Particle velocity field measurements in a near-wall flow using evanescent wave illumination. Exp Fluids 34:115–121

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Sadr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadr, R., Li, H. & Yoda, M. Impact of hindered Brownian diffusion on the accuracy of particle-image velocimetry using evanescent-wave illumination. Exp Fluids 38, 90–98 (2005). https://doi.org/10.1007/s00348-004-0895-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-004-0895-y

Keywords

Navigation