Skip to main content
Log in

Molecular biology of insect olfaction:recent progress and conceptual models

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Insects have an enormous impact on global public health as disease vectors and as agricultural enablers as well as pests and olfaction is an important sensory input to their behavior. As such it is of great value to understand the interplay of the molecular components of the olfactory system which, in addition to fostering a better understanding of insect neurobiology, may ultimately aid in devising novel intervention strategies to reduce disease transmission or crop damage. Since the first discovery of odorant receptors in vertebrates over a decade ago, much of our view on how the insect olfactory system might work has been derived from observations made in vertebrates and other invertebrates, such as lobsters or nematodes. Together with the advantages of a wide range of genetic tools, the identification of the first insect odorant receptors in Drosophila melanogaster in 1999 paved the way for rapid progress in unraveling the question of how olfactory signal transduction and processing occurs in the fruitfly. This review intends to summarize much of this progress and to point out some areas where advances can be expected in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AL:

Antennal lobe

CNG:

Cyclic nucleotide gated

CSP:

Chemosensory protein

DOR:

Drosophila odorant receptor

GRCR:

G protein coupled receptor

GRK:

G protein coupled receptor kinases

LN:

Local neuron

OBP:

Odorant binding protein

ODE:

Odor degrading enzymes

OR:

Odorant receptor

ORN:

Olfactory receptor neuron

PBP:

Pheromone binding protein

PN:

Projection neuron

PBPRP:

Pheromone binding protein–related protein

SNMP:

Sensory neuron membrane protein

VA:

Vaccenyl acetate

References

  • Abumrad NA, el-Maghrabi MR, Amri EZ, Lopez E, Grimaldi PA (1993) Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. Homology with human CD36. J Biol Chem 268:17665–17668

    PubMed  CAS  Google Scholar 

  • Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF, George RA, Lewis SE, Richards S, Ashburner M, Henderson SN, Sutton GG, Wortman JR, Yandell MD, Zhang Q, Chen LX, Brandon RC, Rogers YH, Blazej RG, Champe M, Pfeiffer BD, Wan KH, Doyle C, Baxter EG, Helt G, Nelson CR, Gabor GL, Abril JF, Agbayani A, An HJ, Andrews-Pfannkoch C, Baldwin D, Ballew RM, Basu A, Baxendale J, Bayraktaroglu L, Beasley EM, Beeson KY, Benos PV, Berman BP, Bhandari D, Bolshakov S, Borkova D, Botchan MR, Bouck J, Brokstein P, Brottier P, Burtis KC, Busam DA, Butler H, Cadieu E, Center A, Chandra I, Cherry JM, Cawley S, Dahlke C, Davenport LB, Davies P, de Pablos B, Delcher A, Deng Z, Mays AD, Dew I, Dietz SM, Dodson K, Doup LE, Downes M, Dugan-Rocha S, Dunkov BC, Dunn P, Durbin KJ, Evangelista CC, Ferraz C, Ferriera S, Fleischmann W, Fosler C, Gabrielian AE, Garg NS, Gelbart WM, Glasser K, Glodek A, Gong F, Gorrell JH, Gu Z, Guan P, Harris M, Harris NL, Harvey D, Heiman TJ, Hernandez JR, Houck J, Hostin D, Houston KA, Howland TJ, Wei MH, Ibegwam C et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–195

    Article  PubMed  Google Scholar 

  • Alloway PG, Howard L and Dolph PJ (2000) The formation of stable rhodopsin-arrestin complexes induces apoptosis and photoreceptor cell degeneration. Neuron 28:129–138

    Article  PubMed  CAS  Google Scholar 

  • Antonny B, Sukumar M, Bigay J, Chabre M and Higashijima T (1993) The mechanism of aluminum-independent G-protein activation by fluoride and magnesium. 31P NMR spectroscopy and fluorescence kinetic studies. J Biol Chem 268:2393–2402

    PubMed  CAS  Google Scholar 

  • Asch AS, Liu I, Briccetti FM, Barnwell JW, Kwakye-Berko F, Dokun A, Goldberger J and Pernambuco M (1993) Analysis of CD36 binding domains: ligand specificity controlled by dephosphorylation of an ectodomain. Science 262:1436–1440

    PubMed  CAS  Google Scholar 

  • Baneres JL and Parello J (2003) Structure-based analysis of GPCR function: evidence for a novel pentameric assembly between the dimeric leukotriene B4 receptor BLT1 and the G-protein. J Mol Biol 329:815–829

    Article  PubMed  CAS  Google Scholar 

  • Baumann A, Frings S, Godde M, Seifert R and Kaupp UB (1994) Primary structure and functional expression of a Drosophila cyclic nucleotide-gated channel present in eyes and antennae. EMBO Journal 13:5040–5050

    PubMed  CAS  Google Scholar 

  • Bette S, Breer H and Krieger J (2002) Probing a pheromone binding protein of the silkmoth Antheraea polyphemus by endogenous tryptophan fluorescence. Insect Biochem Mol Biol 32:241–246

    Article  PubMed  CAS  Google Scholar 

  • Biessmann H, Walter MF, Dimitratos S and Woods D (2002) Isolation of cDNA clones encoding putative odorant binding proteins from the antennae of the malaria-transmitting mosquito, Anopheles gambiae. Insect Mol Biol 11:123–132

    Article  PubMed  CAS  Google Scholar 

  • Boeckh J, Boeckh V (1979) Threshold and odor specificity of pheromone-sensitive nerurons in the deutocerebrum of Antheraea pernyi and A. polyphemus (Saturnidae). J Comp Physiol 132:235–242

    Article  CAS  Google Scholar 

  • Boekhoff I, Raming K, Breer H (1990) Pheromone-induced stimulation of inositol-trisphosphate formation in insect antennae is mediated by G-proteins. J Comp Physiol B 160:99–103

    Article  CAS  Google Scholar 

  • Boekhoff I, Michel WC, Breer H, Ache BW (1994) Single odors differentially stimulate dual second messenger pathways in lobster olfactory receptor cells. J Neurosci 14:3304–3309

    PubMed  CAS  Google Scholar 

  • Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    PubMed  CAS  Google Scholar 

  • Breer H, Boekhoff I, Tareilus E (1990) Rapid kinetics of second messenger formation in olfactory transduction. Nature 345:65–68

    Article  PubMed  CAS  Google Scholar 

  • Briand L, Nespoulous C, Huet JC, Takahashi M, Pernollet JC (2001) Ligand binding and physico-chemical properties of ASP2, a recombinant odorant-binding protein from honeybee (Apis mellifera L.). Eur J Biochem 268:752–760

    Article  PubMed  CAS  Google Scholar 

  • Briand L, Swasdipan N, Nespoulous C, Bezirard V, Blon F, Huet JC, Ebert P, Penollet JC (2002) Characterization of a chemosensory protein (ASP3c) from honeybee (Apis mellifera L.) as a brood pheromone carrier. Eur J Biochem 269:4586–4596

    Article  PubMed  CAS  Google Scholar 

  • de Bruyne M, Clyne PJ, Carlson JR (1999) Odor coding in a model olfactory organ: the Drosophila maxillary palp. J Neurosci 19:4520–4532

    PubMed  Google Scholar 

  • de Bruyne M, Foster K, Carlson J (2001) Odor coding in the Drosophila antenna. Neuron 30:537–552

    Article  PubMed  Google Scholar 

  • Buchner E (1991) Genes expressed in the adult brain of Drosophila and effects of their mutations on behavior: a survey of transmitter- and second messenger-related genes. J Neurogenet 7:153–192

    Article  PubMed  CAS  Google Scholar 

  • Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187

    Article  PubMed  CAS  Google Scholar 

  • Bunemann M, Frank M, Lohse MJ (2003) Gi protein activation in intact cells involves subunit rearrangement rather than dissociation. Proc Natl Acad Sci U S A 100:16077–16082

    Article  PubMed  CAS  Google Scholar 

  • Campanacci V, Krieger J, Bette S, Sturgis JN, Lartigue A, Cambillau C, Breer H, Tegoni M (2001) Revisiting the specificity of Mamestra brassicae and Antheraea polyphemus pheromone-binding proteins with a fluorescence binding assay. J Biol Chem 276:20078–20084

    Article  PubMed  CAS  Google Scholar 

  • Christensen TA, Pawlowski VM, Lei H, Hildebrand JG (2000) Multi-unit recordings reveal context-dependent modulation of synchrony in odor-specific neural ensembles. Nat Neurosci 3:927–931

    Article  PubMed  CAS  Google Scholar 

  • Clyne P, Grant A, O’Connell R, Carlson JR (1997) Odorant response of individual sensilla on the Drosophila antenna. Invert Neurosci 3:127–135

    PubMed  CAS  Google Scholar 

  • Clyne PJ, Warr CG, Freeman MR, Lessing D, Kim J, Carlson JR (1999) A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 22:327–338

    Article  PubMed  CAS  Google Scholar 

  • Cork A, Park KC (1996) Identification of electrophysiological-active compounds for the malaria mosquito, Anopheles gambiae, in human sweat extracts. Med Veterinary Entomol 10:269–276

    CAS  Google Scholar 

  • Dear TN, Boehm T, Keverne EB, Rabbitts TH (1991) Novel genes for potential ligand-binding proteins in subregions of the olfactory mucosa. EMBO J 10:2813–2819

    PubMed  CAS  Google Scholar 

  • Dickens JC, Callahan FE, Wergin WP, Murphy CA, Vogt RG (1998) Odorant-binding proteins of true bugs. Generic specificity, sexual dimorphism, and association with subsets of chemosensory sensilla. Ann N Y Acad Sci 855:306–310

    PubMed  CAS  Google Scholar 

  • Dobritsa AA, van der Goes van Naters W, Warr CG, Steinbrecht RA, Carlson JR (2003) Integrating the molecular and cellular basis of odor coding in the Drosophila antenna. Neuron 37:827–841

    Article  PubMed  CAS  Google Scholar 

  • Dubin AE, Liles MM, Seligman F, Le T, Tolli J, Harris GL (1998) Involvement of genes encoding a K+ channel (ether a go-go) and a Na+ channel (smellblind) in Drosophila olfaction. Ann NY Acad Sci 855:212–222

    PubMed  CAS  Google Scholar 

  • Dwyer ND, Troemel ER, Sengupta P, Bargmann CI (1998) Odorant receptor localization to olfactory cilia is mediated by ODR-4, a novel membrane-associated protein. Cell 93:455–466

    Article  PubMed  CAS  Google Scholar 

  • Fadool DA, Ache BW (1992) Plasma membrane inositol 1,4,5-trisphosphate-activated channels mediate signal transduction in lobster olfactory receptor neurons. Neuron 9:907–918

    Article  PubMed  CAS  Google Scholar 

  • Fiala A, Spall T, Diegelmann S, Eisermann B, Sachse S, Devaud JM, Buchner E, Galizia CG (2002) Genetically expressed cameleon in Drosophila melanogaster is used to visualize olfactory information in projection neurons. Curr Biol 12:1877–1884

    Article  PubMed  CAS  Google Scholar 

  • Firestein S (2001) How the olfactory system makes sense of scents. Nature 413:211–218

    Article  PubMed  CAS  Google Scholar 

  • Flower DR (1996) The lipocalin protein family: structure and function. Biochem J 318 (Pt 1):1–14

    PubMed  CAS  Google Scholar 

  • Flower DR, North AC, Attwood TK (1991) Mouse oncogene protein 24p3 is a member of the lipocalin protein family. Biochem Biophys Res Commun 180:69–74

    Article  PubMed  CAS  Google Scholar 

  • Flower DR, North AC, Sansom CE (2000) The lipocalin protein family: structural and sequence overview. Biochim Biophys Acta 1482:9–24

    PubMed  CAS  Google Scholar 

  • Fox AN, Pitts RJ, Robertson HM, Carlson JR, Zwiebel LJ (2001) Candidate odorant receptors from the malaria vector mosquito Anopheles gambiae and evidence of down-regulation in response to blood feeding. Proc Natl Acad Sci U S A 98:14693–14697

    Article  PubMed  CAS  Google Scholar 

  • Fox AN, Pitts RJ, Zwiebel LJ (2002) A cluster of candidate odorant receptors from the malaria vector mosquito, Anopheles gambiae. Chem Senses 27:453–459

    Article  PubMed  CAS  Google Scholar 

  • Freedman NJ, Lefkowitz RJ (1996) Desensitization of G protein-coupled receptors. Recent Prog Horm Res 51:319–353

    PubMed  CAS  Google Scholar 

  • Fuentes-Prior P, Noeske-Jungblut C, Donner P, Schleuning WD, Huber R, Bode W (1997) Structure of the thrombin complex with triabin, a lipocalin-like exosite-binding inhibitor derived from a triatomine bug. Proc Natl Acad Sci U S A 94:11845–11850

    Article  PubMed  CAS  Google Scholar 

  • Gao Q, Chess A (1999) Identification of candidate Drosophila olfactory receptors from genomic DNA sequence. Genomics 60:31–39

    Article  PubMed  CAS  Google Scholar 

  • Gimelbrant AA, Stoss TD, Landers TM, McClintock TS (1999) Truncation releases olfactory receptors from the endoplasmic reticulum of heterologous cells. J Neurochem 72:2301–2311

    Article  PubMed  CAS  Google Scholar 

  • Gimelbrant AA, Haley SL, McClintock TS (2001) Olfactory receptor trafficking involves conserved regulatory steps. J Biol Chem 276:7285–7290

    Article  PubMed  CAS  Google Scholar 

  • Goldman AL, Van der Goes van Naters W, Lessing D, Warr CG, Carlson JR (2005) Coexpression of two functional odor receptors in one neuron. Neuron 45:661–666

    Article  PubMed  CAS  Google Scholar 

  • Gong WJ, Golic KG (2003) Ends-out, or replacement, gene targeting in Drosophila. Proc Natl Acad Sci U S A 100:2556–2561

    Article  PubMed  CAS  Google Scholar 

  • Hague C, Uberti MA, Chen Z, Bush CF, Jones SV, Ressler KJ, Hall RA, Minneman KP (2004) Olfactory receptor surface expression is driven by association with the beta2-adrenergic receptor. Proc Natl Acad Sci U S A 101:13672–13676

    Article  PubMed  CAS  Google Scholar 

  • Hallem E, Fox AN, Zwiebel LJ, Carlson JR (2004a) A mosquito odorant receptor tuned to a component of human sweat. Nature 427:212–213

    Article  PubMed  CAS  Google Scholar 

  • Hallem E, Ho MG, Carlson JR (2004b) The molecular basis of odor coding in the Drosophila antenna. Cell 117:965–979

    Article  PubMed  CAS  Google Scholar 

  • Hamm HE (1998) The many faces of G protein signaling. J Biol Chem 273:669–672

    Article  PubMed  CAS  Google Scholar 

  • Hildebrand JG, Shepherd GM (1997) Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu Rev Neurosci 20:595–631

    Article  PubMed  CAS  Google Scholar 

  • Hill CA, Fox AN, Pitts RJ, Kent LB, Tan PL, Chrystal MA, Cravchik A, Collins FH, Robertson HM, Zwiebel LJ (2002) G protein-coupled receptors in Anopheles gambiae. Science 298:176–178

    Article  PubMed  CAS  Google Scholar 

  • Hyde DR, Mecklenburg KL, Pollock JA, Vihtelic TS, Benzer S (1990) Twenty Drosophila visual system cDNA clones: one is a homolog of human arrestin. Proc Natl Acad Sci U S A 87:1008–1012

    PubMed  CAS  Google Scholar 

  • Ikeda M, Maruyama Y (2001) Inhibitory effects of ruthenium red on inositol 1,4, 5-trisphosphate-induced responses in rat megakaryocytes. Biochem Pharmacol 61:7–13

    Article  PubMed  CAS  Google Scholar 

  • Ishida Y, Leal WS (2002) Cloning of putative odorant-degrading enzyme and integumental esterase cDNAs from the wild silkmoth, Antheraea polyphemus. Insect Biochem Mol Biol 32:1775–1780

    Article  PubMed  CAS  Google Scholar 

  • Ishida Y, Cornel AJ, Leal WS (2002) Identification and cloning of a female antenna-specific odorant-binding protein in the mosquito Culex quinquefasciatus. J Chem Ecol 28:867–871

    Article  PubMed  CAS  Google Scholar 

  • Ishida Y, Chen AM, Tsuruda JM, Cornel AJ, Debboun M, Leal WS (2004) Intriguing olfactory proteins from the yellow fever mosquito, Aedes aegypti. Naturwissenschaften 91:426–431

    Article  PubMed  CAS  Google Scholar 

  • Jackson FR, Newby LM, Kulkarni SJ (1990) Drosophila GABAergic systems: sequence and expression of glutamic acid decarboxylase. J Neurochem 54:1068–1078

    PubMed  CAS  Google Scholar 

  • Jacquin-Joly E, Merlin C (2004) Insect olfactory receptors: contributions of molecular biology to chemical ecology. J Chem Ecol 30:2359–2397

    Article  PubMed  CAS  Google Scholar 

  • Janetopoulos C, Jin T, Devreotes P (2001) Receptor-mediated activation of heterotrimeric G-proteins in living cells. Science 291:2408–2811

    Article  PubMed  CAS  Google Scholar 

  • Jones DT, Reed RR (1989) Golf: an olfactory neuron specific-G protein involved in odorant signal transduction. Science 244:790–795

    PubMed  CAS  Google Scholar 

  • Jones WD, Nguyen TA, Kloss B, Lee KJ, Vosshall LB (2005) Functional conservation of an insect odorant receptor gene across 250 million years of evolution. Curr Biol 15:R119–R121

    Article  PubMed  CAS  Google Scholar 

  • Kaissling KE (1996) Peripheral mechanisms of pheromone reception in moths. Chem Senses 21:257–268

    PubMed  CAS  Google Scholar 

  • Kasang G, Kaissling KE (1972) Kinetic studies of transduction in olfactory receptors of Bombyx mori. In: Schneider D (eds) International symposia on olfaction and taste. Vol. 4, Verlagsgesellschaft, F. R. G. Stuttgart, pp 200–206

  • Kim MS, Repp A, Smith DP (1998) LUSH odorant-binding protein mediates chemosensory responses to alcohols in Drosophila melanogaster. Genetics 150:711–721

    PubMed  CAS  Google Scholar 

  • Kim J, Moriyama EN, Warr CG, Clyne PJ, Carlson JR (2000) Identification of novel multi-transmembrane proteins from genomic databases using quasi-periodic structural properties. Bioinformatics 16:767–775

    Article  PubMed  CAS  Google Scholar 

  • Kreher SA, Kwon JY, Carlson JR (2005) The molecular basis of odor coding in the Drosophila larva. Neuron 46:445–456

    Article  PubMed  CAS  Google Scholar 

  • Krieger J, Breer H (1999) Olfactory reception in invertebrates. Science 286:720–723

    Article  PubMed  CAS  Google Scholar 

  • Krieger J, Raming K, Dewer YM, Bette S, Conzelmann S and Breer H (2002) A divergent gene family encoding candidate olfactory receptors of the moth Heliothis virescens. Eur J Neurosci 16:619–628

    Article  PubMed  Google Scholar 

  • Krieger J, Klink O, Mohl C, Raming K, Breer H (2003) A candidate olfactory receptor subtype highly conserved across different insect orders. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 189:519–526

    Article  PubMed  CAS  Google Scholar 

  • Krieger J, Grosse-Wilde E, Gohl T, Dewer YM, Raming K, Breer H (2004) Genes encoding candidate pheromone receptors in a moth (Heliothis virescens). Proc Natl Acad Sci U S A 101:11845–11850

    Article  PubMed  CAS  Google Scholar 

  • Larsson MC, Domingos AI, Jones WD, Chiappe ME, Amrein H, Vosshall LB (2004) Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43:703–714

    Article  PubMed  CAS  Google Scholar 

  • Lartigue A, Campanacci V, Roussel A, Larsson AM, Jones TA, Tegoni M, Cambillau C (2002) X-ray structure and ligand binding study of a moth chemosensory protein. J Biol Chem 277:32094–32098

    Article  PubMed  CAS  Google Scholar 

  • Laue M, Maida R, Redkozubov A (1997) G-protein activation, identification and immunolocalization in pheromone-sensitive sensilla trichodea of moths. Cell Tissue Res 288:149–158

    Article  PubMed  CAS  Google Scholar 

  • Laurent G (1999) A systems perspective on early olfactory coding. Science 286:723–728

    Article  PubMed  CAS  Google Scholar 

  • Lei H, Christensen TA, Hildebrand JG (2004) Spatial and temporal organization of ensemble representations for different odor classes in the moth antennal lobe. J Neurosci 24:11108–11119

    Article  PubMed  CAS  Google Scholar 

  • Maibeche-Coisne M, Merlin C, Francois MC, Queguiner I, Porcheron P, Jacquin-Joly E (2004) Putative odorant-degrading esterase cDNA from the moth Mamestra brassicae: cloning and expression patterns in male and female antennae. Chem Senses 29:381–390

    Article  PubMed  CAS  Google Scholar 

  • Maida R, Krieger J, Gebauer T, Lange U, Ziegelberger G (2000) Three pheromone-binding proteins in olfactory sensilla of the two silkmoth species Antheraea polyphemus and Antheraea pernyi. Eur J Biochem 267:2899–2908

    Article  PubMed  CAS  Google Scholar 

  • Malnic B, Hirono J, Sato T, Buck LB (1999) Combinatorial receptor codes for odors. Cell 96:713–723

    Article  PubMed  CAS  Google Scholar 

  • Markby DW, Onrust R, Bourne HR (1993) Separate GTP binding and GTPase activating domains of a G alpha subunit. Science 262:1895–1901

    PubMed  CAS  Google Scholar 

  • McClintock TS, Landers TS, Gimelbrandt AA, Fuller LZ, Jackson BA, Jayawickreme CK, Lerner MR (1997) Functional expression of olfactory-adrenergic receptor chimeras and intracellular retention of heterologously expressed olfactory receptors. Mol Brain Res 48:270–278

    Article  PubMed  CAS  Google Scholar 

  • McCudden CR, Hains MD, Kimple RJ, Siderovski DP, Willard FS (2005) G-protein signaling: back to the future. Cell Mol Life Sci 62:551–577

    Article  PubMed  CAS  Google Scholar 

  • McKenna MP, Hekmat Scafe DS, Gaines P, Carlson JR (1994) Putative Drosophila pheromone-binding proteins expressed in a subregion of the olfactory system. J Biol Chem 269:16340–16347

    PubMed  CAS  Google Scholar 

  • McPherson SM, McPherson PS, Mathews L, Campbell KP, Longo FJ (1992) Cortical localization of a calcium release channel in sea urchin eggs. J Cell Biol 116:1111–1121

    Article  PubMed  CAS  Google Scholar 

  • Melo AC, Rutzler M, Pitts RJ, Zwiebel LJ (2004) Identification of a chemosensory receptor from the yellow fever mosquito, Aedes aegypti, that is highly conserved and expressed in olfactory and gustatory organs. Chem Senses 29:403–410

    Article  PubMed  CAS  Google Scholar 

  • Merrill CE, Riesgo-Escovar J, Pitts RJ, Kafatos FC, Carlson JR, Zwiebel LJ (2002) Visual arrestins in olfactory pathways of Drosophila and the malaria vector mosquito Anopheles gambiae. Proc Natl Acad Sci U S A 99:1633–1638

    Article  PubMed  CAS  Google Scholar 

  • Merrill CE, Pitts RJ, Zwiebel LJ (2003) Molecular characterization of arrestin family members in the malaria vector mosquito, Anopheles gambiae. Insect Mol Biol 12:641–650

    Article  PubMed  CAS  Google Scholar 

  • Merrill CE, Sherertz T, Walker W, Zwiebel LJ (2005) Odorant specific requirements for arrestin function in Drosophila olfaction. J Neurobiol 63(1):15–28

    Article  PubMed  CAS  Google Scholar 

  • Michel WC, Ache BW (1992) Cyclic nucleotides mediate an odor-evoked potassium conductance in lobster olfactory receptor cells. J Neurosci 12:3979–3984

    PubMed  CAS  Google Scholar 

  • Mohl C, Breer H, Krieger J (2002) Species-specific pheromonal compounds induce distinct conformational changes of pheromone binding protein subtypes from Antheraea polyphemus. Invert Neurosci 4:165–174

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Sakurai T, Nishioka T, Touhara K (2005) Insect sex-pheromone signals mediated by specific combinations of olfactory receptors. Science 307:1638–1642

    Article  PubMed  CAS  Google Scholar 

  • Neuhaus EM, Gisselmann G, Zhang W, Dooley R, Stortkuhl K, Hatt H (2005) Odorant receptor heterodimerization in the olfactory system of Drosophila melanogaster. Nat Neurosci 8:15–17

    Article  PubMed  CAS  Google Scholar 

  • Ng M, Roorda RD, Lima SQ, Zemelman BV, Morcillo P, Miesenbock G (2002) Transmission of olfactory information between three populations of neurons in the antennal lobe of the fly. Neuron 36:463–474

    Article  PubMed  CAS  Google Scholar 

  • Park SK, Shanbhag SR, Wang Q, Hasan G, Steinbrecht RA, Pikielny CW (2000) Expression patterns of two putative odorant-binding proteins in the olfactory organs of Drosophila melanogaster have different implications for their functions. Cell Tissue Res 300:181–192

    PubMed  CAS  Google Scholar 

  • Pelosi P (1994) Odorant-binding proteins. Crit Rev Biochem Mol Biol 29:199–228

    PubMed  CAS  Google Scholar 

  • Pelosi P (1996) Perireceptor events in olfaction. J Neurobiol 30:3–19

    Article  PubMed  CAS  Google Scholar 

  • Pelosi P, Maida R (1995) Odorant-binding proteins in insects. Comp Biochem Physiol B Biochem Mol Biol 111:503–514

    Article  PubMed  CAS  Google Scholar 

  • Pikielny CW, Hasan G, Rouyer F, Rosbash M (1994) Members of a family of Drosophila putative odorant-binding proteins are expressed in different subsets of olfactory hairs. Neuron 12:35–49

    Article  PubMed  CAS  Google Scholar 

  • Pippig S, Andexinger S, Daniel K, Puzicha M, Caron MG, Lefkowitz RJ, Lohse MJ (1993) Overexpression of beta-arrestin and beta-adrenergic receptor kinase augment desensitization of beta 2-adrenergic receptors. J Biol Chem 268:3201–3208

    PubMed  CAS  Google Scholar 

  • Pitts RJ, Fox AN, Zwiebel LJ (2004) A highly conserved candidate chemoreceptor expressed in both olfactory and gustatory tissues in the malaria vector, Anopheles gambiae. Proc Natl Acad Sci U S A 101:5058–5063

    Article  PubMed  CAS  Google Scholar 

  • Pophof B (2002) Moth pheromone binding proteins contribute to the excitation of olfactory receptor cells. Naturwissenschaften 89:515–518

    Article  PubMed  CAS  Google Scholar 

  • Pophof B (2004) Pheromone-binding proteins contribute to the activation of olfactory receptor neurons in the silkmoths Antheraea polyphemus and Bombyx mori. Chem Senses 29:117–125

    Article  PubMed  CAS  Google Scholar 

  • Reddy PS, Corley RB (1998) Assembly, sorting, and exit of oligomeric proteins from the endoplasmic reticulum. Bioessays 20:546–554

    Article  PubMed  CAS  Google Scholar 

  • Ressler KJ, Sullivan SL, Buck LB (1993) A zonal organization of odorant receptor gene expression in the olfactory epithelium. Cell 73:597–609

    Article  PubMed  CAS  Google Scholar 

  • Riviere S, Lartigue A, Quennedey B, Campanacci V, Farine JP, Tegoni M, Cambillau C, Brossut R (2003) A pheromone-binding protein from the cockroach Leucophaea maderae: cloning, expression and pheromone binding. Biochem J 371:573–579

    Article  PubMed  CAS  Google Scholar 

  • Robertson HM, Warr CG, Carlson JR (2003) Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proc Natl Acad Sci U S A 100 Suppl 2:14537–14542

    Article  PubMed  CAS  Google Scholar 

  • Rogers ME, Sun M, Lerner MR, Vogt RG (1997) Snmp-1, a novel membrane protein of olfactory neurons of the silk moth Antheraea polyphemus with homology to the CD36 family of membrane proteins. J Biol Chem 272:14792–14799

    Article  PubMed  CAS  Google Scholar 

  • Rogers ME, Krieger J, Vogt RG (2001) Antennal SNMPs (sensory neuron membrane proteins) of Lepidoptera define a unique family of invertebrate CD36-like proteins. J Neurobiol 49:47–61

    Article  PubMed  CAS  Google Scholar 

  • Rybczynski R, Reagan J, Lerner MR (1989) A pheromone-degrading aldehyde oxidase in the antennae of the moth Manduca sexta. J Neurosci 9:1341–1353

    PubMed  CAS  Google Scholar 

  • Sakurai T, Nakagawa T, Mitsuno H, Mori H, Endo Y, Tanoue S, Yasukochi Y, Touhara K, Nishioka T (2004) Identification and functional characterization of a sex pheromone receptor in the silkmoth Bombyx mori. Proc Natl Acad Sci U S A 101:16653–16658

    Article  PubMed  CAS  Google Scholar 

  • Sandler BH, Nikonova L, Leal WS, Clardy J (2000) Sexual attraction in the silkworm moth: structure of the pheromone-binding-protein-bombykol complex. Chem Biol 7:143–151

    Article  PubMed  CAS  Google Scholar 

  • Shanbhag SR, Müller B, Steinbrech RA (1999) Atlas of olfactory organs of Drosophila melanogaster 1.Types, external organization, innervation and distribution of olfactory sensilla. Int J Insect Morphol Embryol 28:377–397

    Article  Google Scholar 

  • Shanbhag SR, Hekmat-Scafe D, Kim MS, Park SK, Carlson JR, Pikielny C, Smith DP, Steinbrecht RA (2001a) Expression mosaic of odorant-binding proteins in Drosophila olfactory organs. Microsc Res Tech 55:297–306

    Article  PubMed  CAS  Google Scholar 

  • Shanbhag SR, Park SK, Pikielny CW, Steinbrecht RA (2001b) Gustatory organs of Drosophila melanogaster: fine structure and expression of the putative odorant-binding protein PBPRP2. Cell Tissue Res 304:423–437

    Article  PubMed  CAS  Google Scholar 

  • Shields VD, Hildebrand JG (2001) Recent advances in insect olfaction, specifically regarding the morphology and sensory physiology of antennal sensilla of the female sphinx moth Manduca sexta. Microsc Res Tech 55:307–329

    Article  PubMed  CAS  Google Scholar 

  • Sinnarajah S, Ezeh PI, Pathirana S, Moss AG, Morrison EE, Vodyanoy V (1998) Inhibition and enhancement of odorant-induced cAMP accumulation in rat olfactory cilia by antibodies directed against Gαs/olf- and Gαi-protein subunits. FEBS Lett 426:377–380

    Article  PubMed  CAS  Google Scholar 

  • Smith DP (1999) Drosophila odor receptors revealed. Neuron 22:203–204

    Article  PubMed  CAS  Google Scholar 

  • Smith DP, Shieh BH, Zuker CS (1990) Isolation and structure of an arrestin gene from Drosophila. Proc Natl Acad Sci U S A 87:1003–1007

    PubMed  CAS  Google Scholar 

  • Steinbrecht RA, Műller B (1971) On the stimulus conducting structures in insect olfactory receptors. Z Zellforsch Mikrosk Anat 117:570–575

    Article  PubMed  CAS  Google Scholar 

  • Stengl M (1994) Inositol-trisphosphate-dependent calcium currents precede cation currents in insect olfactory receptor neurons in vitro. J Comp Physiol [A] 174:187–194

    CAS  Google Scholar 

  • Stortkuhl KF, Kettler R (2001) Functional analysis of an olfactory receptor in Drosophila melanogater. Proc Natl Acad Sci U S A 98:9381–9385

    Article  PubMed  CAS  Google Scholar 

  • Tandon NN, Lipsky RH, Burgess WH, Jamieson GA (1989) Isolation and characterization of platelet glycoprotein IV (CD36). J Biol Chem 264:7570–7575

    PubMed  CAS  Google Scholar 

  • Tegoni M, Campanacci V, Cambillau C (2004) Structural aspects of sexual attraction and chemical communication in insects. Trends Biochem Sci 29:257–264

    Article  PubMed  CAS  Google Scholar 

  • Terrillon S, Bouvier M (2004) Roles of G-protein-coupled receptor dimerization. EMBO Rep 5:30–34

    Article  PubMed  CAS  Google Scholar 

  • Thorne N, Chromey C, Bray S, Amrein H (2004) Taste perception and coding in Drosophila. Curr Biol 14:1065–1079

    Article  PubMed  CAS  Google Scholar 

  • Vassar R, Ngai J, Axel R (1993) Spatial segregation of odorant receptor expression in the mammalian olfactory epithelium. Cell 74:309–318

    Article  PubMed  CAS  Google Scholar 

  • Vogt RG, Riddiford LM (1981) Pheromone binding and inactivation by moth antennae. Nature 293:161–163

    Article  PubMed  CAS  Google Scholar 

  • Vogt RG, Riddiford LM, Prestwich GD (1985) Kinetic properties of a sex pheromone-degrading enzyme: the sensillar esterase of Antheraea polyphemus. Proc Natl Acad Sci U S A 82:8827–8831

    PubMed  CAS  Google Scholar 

  • Vogt RG, Prestwich GD, Riddiford LM (1988) Sex pheromone receptor proteins. Visualization using a radiolabeled photoaffinity analog. J Biol Chem 263:3952–3959

    PubMed  CAS  Google Scholar 

  • Vogt RG, Rybczynski R, Lerner MR (1991) Molecular cloning and sequencing of general odorant-binding proteins GOBP1 and GOBP2 from the tobacco hawk moth Manduca sexta: comparisons with other insect OBPs and their signal peptides. J Neurosci 11:2972–2984

    PubMed  CAS  Google Scholar 

  • Vosshall LB, Amrein H, Morozov PS, Rzhetsky A, Axel R (1999) A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 96:725–736

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Wright NJ, Guo H, Xie Z, Svoboda K, Malinow R, Smith DP, Zhong Y (2001) Genetic manipulation of the odor-evoked distributed neural activity in the Drosophila mushroom body. Neuron 29:267–276

    Article  PubMed  CAS  Google Scholar 

  • Wang JW, Wong AM, Flores J, Vosshall LB, Axel R (2003) Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 112:271–282

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Guo HF, Pologruto TA, Hannan F, Hakker I, Svoboda K, Zhong Y (2004) Stereotyped odor-evoked activity in the mushroom body of Drosophila revealed by green fluorescent protein-based Ca2+ imaging. J Neurosci 24:6507–6514

    Article  PubMed  CAS  Google Scholar 

  • Wetzel CH, Behrendt H, Gisselmann G, Storkuhl KF, Hovemann B, Hatt H (2001) Functional expression and characterization of a Drosophila odorant receptor in a heterologous cell system. PNAS 98:9377–9380

    Article  PubMed  CAS  Google Scholar 

  • Wojtasek H, Leal WS (1999) Conformational change in the pheromone-binding protein from Bombyx mori induced by pH and by interaction with membranes. J Biol Chem 274:30950–30956

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Piston DW, Johnson CH (1999) A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proc Natl Acad Sci U S A 96:151–156

    Article  PubMed  CAS  Google Scholar 

  • Xu PX, Zwiebel LJ and Smith DP (2003) Identification of a distinct family of genes encoding atypical odorant-binding proteins in the malaria vector mosquito, Anopheles gambiae. Insect Mol Biol 12:549–560

    Article  PubMed  CAS  Google Scholar 

  • Xu P, Atkinson R, Jones DN, Smith DP (2005) Drosophila OBP LUSH is required for activity of pheromone-sensitive neurons. Neuron 45:193–200

    Article  PubMed  CAS  Google Scholar 

  • Ziegelberger G (1995) Redox-shift of the pheromone-binding protein in the silkmoth Antheraea polyphemus. Eur J Biochem 232:706–711

    Article  PubMed  CAS  Google Scholar 

  • Zucchi R, Ronca-Testoni S (1997) The sarcoplasmic reticulum Ca2+ channel/ryanodine receptor: modulation by endogenous effectors, drugs and disease states. Pharmacol Rev 49:1–51

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We wish to especially thank Dr. Jonathan Bohbot for expert illustrations as well as thank Dr. H.W. Kwon, Jason Pitts and H. Wegner for critical reading of the manuscript. This work received financial support from the NIH (DC04692/AI56402 to L.J.Z) and through a Max Kade Post-Doctoral Research Exchange grant (to M. R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LJ Zwiebel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rützler, M., Zwiebel, L. Molecular biology of insect olfaction:recent progress and conceptual models. J Comp Physiol A 191, 777–790 (2005). https://doi.org/10.1007/s00359-005-0044-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-005-0044-y

Keywords

Navigation