Skip to main content
Log in

Target-approaching behavior of barn owls (Tyto alba): influence of sound frequency

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

We studied the influence of frequency on sound localization in free-flying barn owls by quantifying aspects of their target-approaching behavior to a distant sound source during ongoing auditory stimulation. In the baseline condition with a stimulus covering most of the owls hearing range (1–10 kHz), all owls landed within a radius of 20 cm from the loudspeaker in more than 80% of the cases and localization along the azimuth was more accurate than localization in elevation. When the stimulus contained only high frequencies (>5 kHz) no changes in striking behavior were observed. But when only frequencies from 1 to 5 kHz were presented, localization accuracy and precision decreased. In a second step we tested whether a further border exists at 2.5 kHz as suggested by optimality models. When we compared striking behavior for a stimulus having energy from 2.5 to 5 kHz with a stimulus having energy between 1 and 2.5 kHz, no consistent differences in striking behavior were observed. It was further found that pre-takeoff latency was longer for the latter stimulus than for baseline and that center frequency was a better predictor for landing precision than stimulus bandwidth. These data fit well with what is known from head-turning studies and from neurophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BW:

Bandwidth

CF:

Center frequency

EMV:

Ellipsoid mean vector

IC:

Inferior colliculus

ILD:

Interaural level difference

ITD:

Interaural time difference

KS:

Kolmogorov–Smirnov test

KS2D2S:

Kolmogorov–Smirnov 2 dimensions 2 samples test

SD:

Standard deviation

SPL:

Sound pressure level

2D:

2-Dimensional

3D:

3-Dimensional

References

  • Arthur BJ (2004) Sensitivity to spectral interaural intensity difference cues in space-specific neurons of the barn owl. J Comp Physiol A 190:91–104

    Article  CAS  Google Scholar 

  • Bala AD, Spitzer MW, Takahashi TT (2003) Prediction of auditory spatial acuity from neural images on the owl’s auditory space map. Nature 424:771–774

    Article  CAS  PubMed  Google Scholar 

  • Bala AD, Spitzer MW, Takahashi TT (2007) Auditory spatial acuity approximates the resolving power of space-specific neurons. PLoS ONE 2:e675

    Article  PubMed  Google Scholar 

  • Batschelet E (1981) Circular statistics in biology. Academic Press, New York, pp 130–137

    Google Scholar 

  • Brandt T, Seebass C (1994) Die Schleiereule: Ökologie eines heimlichen Kulturfolgers. Aula-Verlag, Wiesbaden

    Google Scholar 

  • Campenhausen Mv, Wagner H (2006) Influence of the facial ruff on the sound-receiving characteristics of the barn owl’s ears. J Comp Physiol A 192:1073–1082

    Article  Google Scholar 

  • Cohen YE, Knudsen EI (1995) Binaural tuning of auditory units in the forebrain archistriatal gaze fields of the barn owl: local organization but no space map. J Neurosci 15:5152–5168

    CAS  PubMed  Google Scholar 

  • Cohen YE, Knudsen EI (1996) Representation of frequency in the primary auditory field of the barn owl forebrain. J Neurophysiol 76:3682–3692

    CAS  PubMed  Google Scholar 

  • Cohen YE, Knudsen EI (1999) Maps versus clusters: different representations of auditory space in the midbrain and forebrain. Trends Neurosci 22:128–135

    Article  CAS  PubMed  Google Scholar 

  • Cohen YE, Miller GL, Knudsen EI (1998) Forebrain pathway for auditory space processing in the barn owl. J Neurophysiol 79:891–902

    CAS  PubMed  Google Scholar 

  • Coles RB, Guppy A (1988) Directional hearing in the barn owl (Tyto alba). J Comp Physiol A 163:117–133

    Article  CAS  PubMed  Google Scholar 

  • Derting TL, Cranford JA (1989) Physical and behavioral correlates of prey vulnerability to barn owl (Tyto alba) predation. Am Midl Nat 121:11–20

    Article  Google Scholar 

  • Dice LR (1945) Minimum intensities of illumination under which owls can find dead prey by sight. Am Nat 79:385–416

    Article  Google Scholar 

  • du Lac S, Knudsen E (1990) Neural maps of head movement vector and speed in the optic tectum of the barn owl. J Neurophysiol 63:131–146

    CAS  PubMed  Google Scholar 

  • Dyson ML, Klump GM, Gauger B (1998) Absolute hearing thresholds and critical masking ratios in the European barn owl: a comparison with other owls. J Comp Physiol A 182:695–702

    Article  Google Scholar 

  • Edut S, Eilam D (2004) Protean behavior under barn owl attack: voles alternate between freezing and fleeing and spiny mice flee in alternating patterns. Behav Brain Res 155:207–216

    Article  PubMed  Google Scholar 

  • Fasano G, Franceschini A (1987) A multidimensional version of the Kolmogorov–Smirnov test. Monthly Notices R Astron Soc 225:155–170

    Google Scholar 

  • Fischer FP (1994) Quantitative TEM analysis of the barn owl basilar papilla. Hear Res 73:1–15

    Article  CAS  PubMed  Google Scholar 

  • Fischer BJ, Christianson GB, Pena JL (2008) Cross-correlation in the auditory coincidence detectors of owls. J Neurosci 28:8107–8115

    Article  CAS  PubMed  Google Scholar 

  • Haresign T, Moiseff A (1988) Early growth and development of the common barn owl’s facial ruff. Auk 105:699–705

    Google Scholar 

  • Harmening WM, Vobig MA, Walter P, Wagner H (2007) Ocular aberrations in barn owl eyes. Vis Res 47:2934–2942

    Article  PubMed  Google Scholar 

  • Harper NS, McAlpine D (2004) Optimal neural population coding of an auditory spatial cue. Nature 430:682–686

    Article  CAS  PubMed  Google Scholar 

  • Hausmann L, Plachta DTT, Singheiser M, Brill S, Wagner H (2008) In-flight corrections in free-flying barn owls (Tyto alba) during sound localization tasks. J Exp Biol 211:2976–2988

    Article  PubMed  Google Scholar 

  • Iwaniuk AN, Clayton DH, Wylie DRW (2006) Echolocation, vocal learning, auditory localization and the relative size of the avian auditory midbrain nucleus (MLd). Behav Brain Res 167:305–317

    Article  PubMed  Google Scholar 

  • Keller CH, Hartung K, Takahashi TT (1998) Head-related transfer functions of the barn owl: measurement and neural responses. Hear Res 118:13–34

    Article  CAS  PubMed  Google Scholar 

  • Knudsen EI, Knudsen PF (1996) Disruption of auditory spatial working memory by inactivation of the forebrain archistriatum in barn owls. Nature 383:428–431

    Article  CAS  PubMed  Google Scholar 

  • Knudsen EI, Konishi M (1978) Space and frequency are represented separately in auditory midbrain of the owl. J Neurophysiol 41:870–884

    CAS  PubMed  Google Scholar 

  • Knudsen EI, Konishi M (1979) Mechanisms of sound localization in the barn owl (Tyto alba). J Comp Physiol A 133:13–21

    Article  Google Scholar 

  • Knudsen EI, Blasdel GG, Konishi M (1979) Sound localization by the barn owl (Tyto alba) measured with search coil technique. J Comp Physiol A 133:1–11

    Article  Google Scholar 

  • Knudsen EI, Knudsen PF, Masino T (1993) Parallel pathways mediating both sound localization and gaze control in the forebrain and midbrain of the barn owl. J Neurosci 13:2837–2852

    CAS  PubMed  Google Scholar 

  • Konishi M (1973a) How the owl tracks its prey. Am Sci 61:414–424

    Google Scholar 

  • Konishi M (1973b) Locatable and nonlocatable acoustic signals for barn owls. Am Nat 107:775–785

    Article  Google Scholar 

  • Köppl C, Gleich O, Manley GA (1993) An auditory fovea in the barn owl cochlea. J Comp Physiol A 171:695–704

    Article  Google Scholar 

  • Kubke MF, Massoglia DP, Carr CE (2004) Bigger brains or bigger nuclei? Regulating the size of auditory structures in birds. Brain Behav Evol 63:169–180

    Article  PubMed  Google Scholar 

  • Langemann U, Zokoll MA, Klump GM (2005) Analysis of spectral shape in the barn owl auditory system. J Comp Physiol A 191:889–901

    Article  CAS  Google Scholar 

  • Mazer JA (1998) How the owl resolves auditory coding ambiguity. Proc Natl Acad Sci USA 95:10932–10937

    Article  CAS  PubMed  Google Scholar 

  • Moiseff A (1989a) Binaural disparity cues available to the barn owl for sound localization. J Comp Physiol A 164:629–636

    Article  CAS  PubMed  Google Scholar 

  • Moiseff A (1989b) Bi-coordinate sound localization by the barn owl. J Comp Physiol A 164:637–644

    Article  CAS  PubMed  Google Scholar 

  • Moiseff A, Konishi M (1981) Neuronal and behavioral sensitivity to binaural time differences in the owl. J Neurosci 1:40–48

    CAS  PubMed  Google Scholar 

  • Nodal FR, Bajo VM, Parsons CH, Schnupp JW, King AJ (2008) Sound localization behavior in ferrets: comparison of acoustic orientation and approach-to-target responses. Neuroscience 154:397–408

    Article  CAS  PubMed  Google Scholar 

  • Ohayon S, van der Willigen RF, Wagner H, Katsman I, Rivlin E (2006) On the barn owl’s visual pre-attack behavior: I. Structure of head movements and motion patterns. J Comp Physiol A 192:927–940

    Article  Google Scholar 

  • Payne RS (1962) How the barn owl locates prey by hearing. In The Living Bird, First Annual of the Cornell Laboratory of Ornithology. The Laboratory of Ornithology at Cornell University, Ithaca, pp 151–159

    Google Scholar 

  • Payne RS (1971) Acoustic location of prey by barn owls. J Exp Biol 54:535–573

    CAS  PubMed  Google Scholar 

  • Pena JL (2003) Binaural processing in the synthesis of auditory spatial receptive fields. Biol Cybern 89:371–377

    Article  PubMed  Google Scholar 

  • Perez ML, Pena JL (2006) Comparison of midbrain and thalamic space-specific neurons in barn owls. J Neurophysiol 95:783–790

    Article  PubMed  Google Scholar 

  • Poganiatz I, Wagner H (2001) Sound-localization experiments with barn owls in virtual space: influence of broadband interaural level different on head-turning behavior. J Comp Physiol A 187:225–233

    Article  CAS  PubMed  Google Scholar 

  • Poganiatz I, Nelken I, Wagner H (2001) Sound localization experiments with barn owls in virtual space: influence of ITD on head-turning behavior. J Assoc Res Otolaryngol 2:1–21

    CAS  PubMed  Google Scholar 

  • Proctor L, Konishi M (1997) Representation of sound localization cues in the auditory thalamus of the barn owl. Proc Natl Acad Sci 94:10421–10425

    Article  CAS  PubMed  Google Scholar 

  • Saberi K, Farabodh H, Konishi M (1998) How do owls localize interaurally phase-ambiguous signals? Proc Natl Acad Sci USA 95:6458–6465

    Article  Google Scholar 

  • Saberi K, Takahashi Y, Farabodh H, Konishi M (1999) Neural bases of an auditory illusion and its elimination in owls. Nat Neurosci 2:656–659

    Article  CAS  PubMed  Google Scholar 

  • Shiffermann E, Eilam D (2004) Movement and direction of movement of a simulated prey affected the success rate in barn owl Tyto alba attack. J Avian Biol 35:111–116

    Article  Google Scholar 

  • Singheiser M (2006) Localization behavior of free-flying barn owls (Tyto alba): effects of frequency and level on striking precision and latency. Diploma Thesis, RWTH Aachen University

  • Takahashi TT, Keller C (1992) Unmasking of auditory targets and enhancement of selectivity to a sound localization cue by simulated motion in the owl’s inferior colliculus. J Neurosci 4:1787–1799

    Google Scholar 

  • Takahashi TT, Bala AD, Spitzer MW, Euston DR, Spezio ML, Keller CH (2003) The synthesis and use of the owl’s auditory space map. Biol Cybern 89:378–387

    Article  CAS  PubMed  Google Scholar 

  • van der Willigen RF, Frost BJ, Wagner H (1998) Stereoscopic depth perception in the owl. Neuroreport 9:1233–1237

    Article  PubMed  Google Scholar 

  • Vonderschen K, Wagner H (2009) Tuning to interaural time difference and frequency differs between the auditory arcopallium and the external nucleus of the inferior colliculus. J Neurophysiol 101:2348–2361

    Article  PubMed  Google Scholar 

  • Wagner H (1993) Sound localization deficits induced by lesions in the barn owl’s auditory space map. J Neurosci 13:371–386

    CAS  PubMed  Google Scholar 

  • Wagner H, Takahashi TT, Konishi M (1987) Representation of interaural time difference in the central nucleus of the barn owl’s inferior colliculus. J Neurosci 7:3105–3116

    CAS  PubMed  Google Scholar 

  • Wagner H, Trinath T, Kautz D (1994) Influence of stimulus level on acoustic motion-direction sensitivity in barn owl midbrain neurons. J Neurophysiol 71:1907–1916

    CAS  PubMed  Google Scholar 

  • Wagner H, Asadollahi A, Bremen P, Endler F, Vonderschen K, Mv Campenhausen (2007) Distribution of interaural time differences in the barn owl’s inferior colliculus in the low- and high-frequency ranges. J Neurosci 27:4191–4200

    Article  CAS  PubMed  Google Scholar 

  • Whitchurch EA, Takahashi TT (2006) Combined auditory and visual stimuli facilitate head saccades in the barn owl (Tyto alba). J Neurophysiol 96:730–745

    Article  PubMed  Google Scholar 

  • Winkowski DE, Knudsen EI (2006) Top-down gain control of the auditory space map by gaze control circuitry in the barn owl. Nature 439:336–339

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Michael Schiek (FZ Juelich) for helpful discussions and suggestions concerning the statistics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Singheiser.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1 This movie illustrates the target approaching behavior of the owls inside the flight room. The owl is sitting on the perch waiting for the presentation of the signal. When the stimulus is presented, the owl turns its head and takes off. In a straight flight path, it approaches the target speaker (dark spot in the front) and lands on it. After approaching, the owl turns around, waiting for the LED to be switched on as a “Go-back” signal (MP4 673 kb)

Online Resource 2 This movie shows the same trial as Online Resource 1 but in slow motion (5 frames/s) (MP4 1172 kb)

Online Resource 3 This movie shows the flight back to the perch. The owl is waiting on the target unless a small LED above the perch is turned on. The reflections of the LED can be seen on the small table behind the perch. When the “Go-back” signal is given, the owl immediately returns to the perch and awaits the experimenter to enter the flight room and rewarding the owl (MP4 397 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singheiser, M., Plachta, D.T.T., Brill, S. et al. Target-approaching behavior of barn owls (Tyto alba): influence of sound frequency. J Comp Physiol A 196, 227–240 (2010). https://doi.org/10.1007/s00359-010-0508-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-010-0508-6

Keywords

Navigation