Skip to main content
Log in

Properties of low-frequency head-related transfer functions in the barn owl (Tyto alba)

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The barn owl (Tyto alba) possesses several specializations regarding auditory processing. The most conspicuous features are the directionally sensitive facial ruff and the asymmetrically arranged ears. The frequency-specific influence of these features on sound has consequences for sound localization that might differ between low and high frequencies. Whereas the high-frequency range (>3 kHz) is well investigated, less is known about the characteristics of head-related transfer functions for frequencies below 3 kHz. In the present study, we compared 1/3 octaveband-filtered transfer functions of barn owls with center frequencies ranging from 0.5 to 9 kHz. The range of interaural time differences was 600 μs at frequencies above 4 kHz, decreased to 505 μs at 3 kHz and increased again to about 615 μs at lower frequencies. The ranges for very low (0.5–1 kHz) and high frequencies (5–9 kHz) were not statistically different. Interaural level differences and monaural gains increased monotonically with increasing frequency. No systematic influence of the body temperature on the measured localization cues was observed. These data have implications for the mechanism underlying sound localization and we suggest that the barn owl’s ears work as pressure receivers both in the high- and low-frequency ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

FFT:

Fast Fourier transformation

HRTF:

Head-related transfer function

HRIR:

Head-related impulse response

ITD:

Interaural time difference

ILD:

Interaural level difference

References

  • Blauert J (1997) Spatial hearing. MIT Press, Cambridge

    Google Scholar 

  • Brainard MS, Knudsen EI, Esterly SD (1992) Neural derivation of sound source location: resolution of spatial ambiguities in binaural cues. J Acoust Soc Am 91:1015–1027

    Article  CAS  PubMed  Google Scholar 

  • Bühler P, Epple W (1980) The vocalizations of the barn owl. J Ornithol 121:36–70

    Article  Google Scholar 

  • Calford MB (1988) Constraints on the coding of sound frequency imposed by the avian interaural canal. J Comp Physiol A 162:491–502

    Article  Google Scholar 

  • Calford MB, Piddington RW (1988) Avian interaural canal enhances interaural delay. J Comp Physiol A 162:503–510

    Article  Google Scholar 

  • Campenhausen M, Wagner H (2006) Influence of the facial ruff on the sound-receiving characteristics of the barn owl’s ears. J Comp Physiol A 192:1073–1082

    Article  Google Scholar 

  • Christensen-Dalsgaard J, Manley GA (2005) Directionality of the lizard ear. J Exp Biol 208:1209–1217

    Article  PubMed  Google Scholar 

  • Coles RB, Guppy A (1988) Directional hearing in the barn owl (Tyto alba). J Comp Physiol A 163:117–133

    Article  CAS  PubMed  Google Scholar 

  • Dyson ML, Klump GM, Gauger B (1998) Absolute hearing thresholds and critical masking ratios in the european barn owl: a comparison with other owls. J Comp Physiol A 182:695–702

    Article  Google Scholar 

  • Egnor SEI (2001) Effects of binaural decorrelation on neural and behavioral processing of interaural level differences in the barn owl (Tyto alba). J Comp Physiol A 187:589–595

    Article  CAS  PubMed  Google Scholar 

  • Fay RR, Feng AS (1987) Mechanisms for directional hearing among nonmammalian vertebrates. In: Yost WA, Gourevitch G (eds) Directional hearing. Springer, New York, pp 179–213

    Google Scholar 

  • Harper NS, McAlpine D (2004) Optimal neural population coding of an auditory spatial cue. Nature 430:682–686

    Article  CAS  PubMed  Google Scholar 

  • Hyson RL, Overholt EM, Lippe WR (1994) Cochlear microphonic measurements of interaural time differences in the chick. Hear Res 81:109–118

    Article  CAS  PubMed  Google Scholar 

  • Johnston RF (1990) Variation in size and shape in pigeons, Columbia livia. Wilson Bull 102:213–225

    Google Scholar 

  • Keller CH, Hartung K, Takahashi TT (1998) Head-related transfer functions of the barn owl: measurement and neural responses. Hear Res 118:13–34

    Article  CAS  PubMed  Google Scholar 

  • Klump G (2000) Sound localization in birds. In: Dooling RJ, Popper AN, Fay RR (eds) Comparative hearing: birds and reptiles. Springer, New York

    Google Scholar 

  • Knudsen EI (1981) The hearing of the barn owl. Sci Am 245:113–125

    Article  Google Scholar 

  • Konishi M (1973) Locatable and nonlocatable acoustic signals for barn owls. Am Nat 107:775–785

    Article  Google Scholar 

  • Köppl C (1997) Phase locking to high frequencies in the auditory nerve and cochlear nucleus magnocellularis of the barn owl, Tyto alba. J Neurosci 17:3312–3321

    PubMed  Google Scholar 

  • Köppl C, Gleich O (1997) Evoked cochlear potentials in the barn owl. J Comp Physiol A 193:601–612

    Article  Google Scholar 

  • Köppl C, Gleich O (2007) Evoked cochlear potentials in the barn owl. J Comp Physiol A 193(6):601–612

    Google Scholar 

  • Larsen ON, Dooling RJ, Ryals BM (1997) Roles of intracranial air pressure in bird audition. In: Lewis ER, Long GR, Lyon RF, Narins PM, Steele CR, Hecht-Poinar E (eds) Diversity in auditory mechanics. World Scientific, Singapore, pp 11–17

    Google Scholar 

  • Larsen ON, Dooling RJ, Michelsen A (2006) Role of pressure difference reception in the directional hearing of budgerigars (Melopsittacus undulatus). J Comp Physiol A 192:1063–1072

    Article  Google Scholar 

  • Lewald J (1990) The directionality of the ear of the pigeon (Columbia livia). J Comp Physiol A 167:533–543

    Article  Google Scholar 

  • Michelsen A, Larsen ON (2008) Pressure difference receiving ears. Bioinsp Biomim 3:1–18. doi:10.1088/1748-3182/3/1/011001

    Article  Google Scholar 

  • Moiseff A (1989) Binaural disparity cues available to the barn owl for sound localization. J Comp Physiol A 164:629–636

    Article  CAS  PubMed  Google Scholar 

  • Moiseff A, Konishi M (1981a) The owl’s interaural pathway is not involved in sound localization. J Comp Physiol 144:299–304

    Article  Google Scholar 

  • Moiseff A, Konishi M (1981b) Neuronal and behavioral sensitivity to binaural time differences in the owl. J Neurosci 1:40–48

    CAS  PubMed  Google Scholar 

  • Okanoya K, Dooling RJ (1987) Hearing in passerine and psittacine birds: a comparative study of absolute and masked auditory thresholds. J Comp Psych 101:7–15

    Article  CAS  Google Scholar 

  • Poganiatz I, Wagner H (2001) Sound-localization experiments with barn owls in virtual space: influence of broadband interaural level difference on head-turning behavior. J Comp Physiol A 187:225–233

    Article  CAS  PubMed  Google Scholar 

  • Poganiatz I, Nelken I, Wagner H (2001) Sound-localization experiments with barn owls in virtual space: influence of interaural time difference on head-turning behavior. JARO 2:1–21

    CAS  PubMed  Google Scholar 

  • Roulin A (2001) Food supply differentially affects sibling negotiation and competition in the barn owl (Tyto alba). Behav Ecol Sociobiol 49:514–519

    Article  Google Scholar 

  • Singheiser M, Plachta DTT, Brill S, Bremen P, van der Willigen R, Wagner H (2010) Target-approaching behavior of barn owls (Tyto alba): influence of sound frequency. J Comp Physiol A 196:227–240

    Article  Google Scholar 

  • Spezio ML, Keller CH, Marrocco RT, Takahashi TT (2000) Head-related transfer functions of the Rhesus monkey. Hear Res 144:73–88

    Article  CAS  PubMed  Google Scholar 

  • Sterbing SJ, Hartung K, Hoffmann KP (2003) Spatial tuning to virtual sounds in the inferior colliculus of the guinea pig. J Neurophysiol 90:2648–2659

    Article  PubMed  Google Scholar 

  • Tollin DJ, Koka K (2009) Postnatal development of sound pressure transformations by the head and pinnae of the cat: monaural characteristics. J Acoust Soc Am 125:980–994

    Article  PubMed  Google Scholar 

  • Vonderschen K, Wagner H (2009) Tuning to interaural time difference and frequency differs between the auditory arcopallium and the external nucleus of the inferior colliculus. J Neurophysiol 101:2348–2361

    Article  PubMed  Google Scholar 

  • Wada Y (1924) Beiträge zur vergleichenden Physiologie der Gehörorgane. Pflugers Arch Ges Physiol 202:46–69

    Article  Google Scholar 

  • Wagner H (1993) Sound-localization deficits induced by lesions in the barn owl’s auditory space map. J Neurosci 13:371–386

    CAS  PubMed  Google Scholar 

  • Wagner H, Mazer JA, von Campenhausen M (2002) Response properties of neurons in the core of the central nucleus of the inferior colliculus of the barn owl. Eur J Neurosci 15:1343–1352

    Article  PubMed  Google Scholar 

  • Wagner H, Asadollahi A, Bremen P, Endler F, Vonderschen K, von Campenhausen M (2007) Distribution of interaural time difference in the barn owl’s inferior colliculus in the low- and high-frequency ranges. J Neurosci 27:4191–4200

    Article  CAS  PubMed  Google Scholar 

  • Weber T, Thorson J, Huber F (1981) Auditory behaviour of the cricket. I. Dynamics of compensated walking and discrimination paradigms on the Kramer treadmill. J Comp Physiol A 141:215–232

    Article  Google Scholar 

Download references

Acknowledgments

We thank Frank Endler for help with the setup and stimulus software, and Gillian Melton for proofreading. Care and treatment of the owls were approved by the Landespräsidium für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen, Recklinghausen, Germany, and principles of laboratory animal care (NIH publication No. 85-23, revised 1985) were followed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Hausmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 127 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hausmann, L., von Campenhausen, M. & Wagner, H. Properties of low-frequency head-related transfer functions in the barn owl (Tyto alba). J Comp Physiol A 196, 601–612 (2010). https://doi.org/10.1007/s00359-010-0546-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-010-0546-0

Keywords

Navigation