Skip to main content
Log in

Pheromones and signature mixtures: defining species-wide signals and variable cues for identity in both invertebrates and vertebrates

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Pheromones have been found in species in almost every part of the animal kingdom, including mammals. Pheromones (a molecule or defined combination of molecules) are species-wide signals which elicit innate responses (though responses can be conditional on development as well as context, experience, and internal state). In contrast, signature mixtures, in invertebrates and vertebrates, are variable subsets of molecules of an animal’s chemical profile which are learnt by other animals, allowing them to distinguish individuals or colonies. All signature mixtures, and almost all pheromones, whatever the size of molecules, are detected by olfaction (as defined by receptor families and glomerular processing), in mammals by the main olfactory system or vomeronasal system or both. There is convergence on a glomerular organization of olfaction. The processing of all signature mixtures, and most pheromones, is combinatorial across a number of glomeruli, even for some sex pheromones which appear to have ‘labeled lines’. Narrowly specific pheromone receptors are found, but are not a prerequisite for a molecule to be a pheromone. A small minority of pheromones act directly on target tissues (allohormone pheromones) or are detected by non-glomerular chemoreceptors, such as taste. The proposed definitions for pheromone and signature mixture are based on the heuristic value of separating these kinds of chemical information. In contrast to a species-wide pheromone, there is no single signature mixture to find, as signature mixtures are a ‘receiver-side’ phenomenon and it is the differences in signature mixtures which allow animals to distinguish each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

2MB2:

2-Methyl-but-2-enal

AOB:

Accessory olfactory bulb

AOS:

Accessory olfactory system

cVA:

cis-Vinyl acetate

DHB:

(R,R)-3,4-Dehydro-exo-brevicomin

ESP1:

Exocrine gland-secreting peptide 1

GC:

Gas chromatography

HPLC:

High-performance liquid chromatography

MHC:

Major histocompatibility complex

MOE:

Main olfactory epithelium

MOS:

Main olfactory system

MOT:

Medial olfactory tract

MTMT:

(Methylthio)methanethiol

MUP:

Major urinary protein

OR:

Olfactory receptor protein

OSN:

Olfactory sensory neuron

SBT:

2-sec-Butyl-4,5-dihydrothiazole

VNO:

Vomeronasal organ

VNS:

Vomeronasal system

VR:

Vomeronasal receptor protein

References

  • Alberts AC (1989) Ultraviolet visual sensitivity in desert iguanas—implications for pheromone detection. Anim Behav 38:129–137

    Google Scholar 

  • Altstein M (2004) Peptide pheromones: an overview. Peptides 25:1373–1376. doi:10.1016/j.peptides.2004.07.002

    PubMed  CAS  Google Scholar 

  • Anton S, Dufour MC, Gadenne C (2007) Plasticity of olfactory-guided behaviour and its neurobiological basis: lessons from moths and locusts. Entomol Exp Appl 123:1–11

    Google Scholar 

  • Atema J, Steinbach MA (2007) Chemical communication and social behavior of the lobster Homarus americanus and other decapod Crustacea. In: Duffy JE, Thiel M (eds) Evolutionary ecology of social and sexual systems: crustaceans as model organisms. Oxford University Press, Oxford & New York, pp 115–144

    Google Scholar 

  • Bateson P, Mameli M (2007) The innate and the acquired: useful clusters or a residual distinction from folk biology? Dev Psychobiol 49:818–831

    PubMed  Google Scholar 

  • Baum MJ, Kelliher KR (2009) Complementary roles of the main and accessory olfactory systems in mammalian mate recognition. Annu Rev Physiol 71:141–160

    PubMed  CAS  Google Scholar 

  • Beauchamp GK, Doty RL, Moulton DG, Mugford RA (1976) The pheromone concept in mammalian chemical communication: a critique. In: Doty RL (ed) Mammalian olfaction, reproductive processes, and behavior. Academic Press, New York, pp 143–160

    Google Scholar 

  • Belanger RM, Moore PA (2006) The use of the major chelae by reproductive male crayfish (Orconectes rusticus) for discrimination of female odours. Behaviour 143:713–731

    Google Scholar 

  • Benton R (2009) Molecular basis of odor detection in insects. Ann N Y Acad Sci 1170:478–481

    PubMed  CAS  Google Scholar 

  • Ben-Shaul Y, Katz LC, Mooney R, Dulac C (2010) In vivo vomeronasal stimulation reveals sensory encoding of conspecific and allospecific cues by the mouse accessory olfactory bulb. Proc Natl Acad Sci USA 107:5172–5177. doi:10.1073/pnas.0915147107

    Google Scholar 

  • Beynon RJ, Hurst JL (2003) Multiple roles of major urinary proteins in the house mouse, Mus domesticus. Biochem Soc Trans 31:142–146

    PubMed  CAS  Google Scholar 

  • Boehm T, Zufall F (2006) MHC peptides and the sensory evaluation of genotype. Trends Neurosci 29:100–107. doi:10.1016/j.tins.2005.11.006

    PubMed  CAS  Google Scholar 

  • Breed MD (1998) Chemical cues in kin recognition: criteria for identification, experimental approaches, and the honey bee as an example. In: Vander Meer RK, Breed MD, Espelie KE, Winston ML (eds) Pheromone communication in social insects: ants, wasps, bees, and termites. Westview Press, Boulder, pp 57–78

    Google Scholar 

  • Breed MD, Buchwald R (2009) Cue diversity and social recognition. In: Gadau J, Fewell JH (eds) Organization of insect societies: from genome to sociocomplexity. Harvard University Press, Cambridge

    Google Scholar 

  • Breithaupt T, Thiel M (eds) (2010) Chemical communication in crustaceans. Springer, New York

  • Brennan PA (2009) Outstanding issues surrounding vomeronasal mechanisms of pregnancy block and individual recognition in mice. Behav Brain Res 200:287–294

    PubMed  CAS  Google Scholar 

  • Brennan PA, Kendrick KM (2006) Mammalian social odours: attraction and individual recognition. Phil Trans R Soc B 361:2061–2078

    PubMed  CAS  Google Scholar 

  • Brennan PA, Zufall F (2006) Pheromonal communication in vertebrates. Nature 444:308–315

    PubMed  CAS  Google Scholar 

  • de Bruyne M, Baker TC (2008) Odor detection in insects: volatile codes. J Chem Ecol 34:882–897

    PubMed  CAS  Google Scholar 

  • Cardé RT, Haynes KF (2004) Structure of the pheromone communication channel in moths In: Cardé R, Millar JG (eds) Advances in insect chemical ecology. Cambridge University Press, Cambridge, pp 283–332

    Google Scholar 

  • Caro S, Balthazart J (2010) Pheromones in birds: myth or reality? J Comp Physiol A Sens Neural Behav Physiol. doi:10.1007/s00359-010-0534-4

  • Chamero P, Marton TF, Logan DW, Flanagan K, Cruz JR, Saghatelian A, Cravatt BF, Stowers L (2007) Identification of protein pheromones that promote aggressive behaviour. Nature 450:899–902

    PubMed  CAS  Google Scholar 

  • Christensen TA (2005) Making scents out of spatial and temporal codes in specialist and generalist olfactory networks. Chem Senses 30:i283–i284. doi:10.1093/chemse/bjh225

    PubMed  Google Scholar 

  • Christensen TA, Hildebrand JG (2002) Pheromonal and host-odor processing in the insect antennal lobe: how different? Curr Opin Neurobiol 12:393–399. doi:10.1016/s0959-4388(02)00336-7

    PubMed  CAS  Google Scholar 

  • Christensen TA, White J (2000) Representation of olfactory information in the brain. In: Finger TE, Silver WL, Restrepo D (eds) The neurobiology of taste and smell, 2nd edn. Wiley-Liss, New York, pp 201–232

    Google Scholar 

  • Conner W, Weller S (2004) A quest for alkaloids: the curious relationship between tiger moths and plants containing pyrrolizidine alkaloids. In: Cardé R, Millar JG (eds) Advances in insect chemical ecology. Cambridge University Press, Cambridge, pp 248–282

    Google Scholar 

  • d’Ettorre P, Heinze J (2005) Individual recognition in ant queens. Curr Biol 15:2170–2174

    PubMed  Google Scholar 

  • d’Ettorre P, Moore AJ (2008) Chemical communication and the coordination of social interactions in insects. In: d’Ettorre P, Hughes DP (eds) Sociobiology of communication: an interdisciplinary perspective. Oxford University Press, Oxford, pp 81–96

    Google Scholar 

  • Datta SR, Vasconcelos ML, Ruta V, Luo S, Wong A, Demir E, Flores J, Balonze K, Dickson BJ, Axel R (2008) The Drosophila pheromone cVA activates a sexually dimorphic neural circuit. Nature 452:473–477

    PubMed  CAS  Google Scholar 

  • Dawkins R (1976) The selfish gene. Oxford University Press, Oxford

    Google Scholar 

  • Døving KB, Lastein S (2009) The alarm reaction in fishes - odorants, modulations of responses, neural pathways. Ann N Y Acad Sci 1170:413–423

    PubMed  Google Scholar 

  • Eisner T, Meinwald J (2003) Alkaloid-derived pheromones and sexual selection in Lepidoptera. In: Blomquist GJ, Vogt RG (eds) Insect pheromone biochemistry and molecular biology: the biosynthesis and detection of insect pheromones and plant volatiles. Academic Press, New York, pp 341–368

    Google Scholar 

  • Eisthen HL (2002) Why are olfactory systems of different animals so similar? Brain Behav Evol 59:273–293

    PubMed  Google Scholar 

  • Ekerholm M, Hallberg E (2005) Primer and short-range releaser pheromone properties of premolt female urine from the shore crab Carcinus maenas. J Chem Ecol 31:1845–1864

    PubMed  CAS  Google Scholar 

  • Eltz T, Zimmermann Y, Pfeiffer C, Pech J, Twele R, Francke W, Quezada-Euan J, Lunau K (2008) An olfactory shift is associated with male perfume differentiation and species divergence in orchid bees. Curr Biol 18:1844–1848

    PubMed  CAS  Google Scholar 

  • Ferkin MH, Sorokin ES, Renfroe MW, Johnston RE (1994) Attractiveness of male odors to females varies directly with plasma testosterone concentration in meadow voles. Physiol Behav 55:347–353

    PubMed  CAS  Google Scholar 

  • Fine JM, Vrieze LA, Sorensen PW (2004) Evidence that petromyzontid lampreys employ a common migratory pheromone that is partially comprised of bile acids. J Chem Ecol 30:2091–2110

    PubMed  CAS  Google Scholar 

  • Gotzek D, Ross KG (2009) Current status of a model system: the gene Gp-9 and its association with social organization in fire ants. PLoS ONE 4:e7713. doi:10.1371/journal.pone.0007713

    PubMed  Google Scholar 

  • Haga S, Hattori T, Sato T, Sato K, Matsuda S, Kobayakawa R, Sakano H, Yoshihara Y, Kikusui T, Touhara K (2010) The male mouse pheromone ESP1 enhances female sexual receptive behaviour through a specific vomeronasal receptor. Nature 466:118–123. doi:10.1038/nature09142

    PubMed  CAS  Google Scholar 

  • Hagelin JC, Jones IL (2007) Bird odors and other chemical substances: a defense mechanism or overlooked mode of intraspecific communication? Auk 124:741–761

    Google Scholar 

  • Hallem EA, Carlson JR (2006) Coding of odors by a receptor repertoire. Cell 125:143–160. doi:10.1016/j.cell.2006.01.050

    PubMed  CAS  Google Scholar 

  • Hamdani EH, Døving KB (2007) The functional organization of the fish olfactory system. Prog Neurobiol 82:80–86. doi:10.1016/j.pneurobio.2007.02.007

    CAS  Google Scholar 

  • Hamilton WD (1964) The genetical evolution of social behaviour. I and II. J Theor Biol 7:1–32

    PubMed  CAS  Google Scholar 

  • Hansson BS (2002) A bug’s smell—research into insect olfaction. Trends Neurosci 25:270–274

    PubMed  CAS  Google Scholar 

  • Hasemeyer M, Yapici N, Heberlein U, Dickson BJ (2009) Sensory neurons in the Drosophila genital tract regulate female reproductive behavior. Neuron 61:511–518

    PubMed  Google Scholar 

  • He J, Ma LM, Kim S, Nakai J, Yu CR (2008) Encoding gender and individual information in the mouse vomeronasal organ. Science 320:535–538

    PubMed  CAS  Google Scholar 

  • Hensch T (2004) Critical period regulation. Annu Rev Neurosci 27:549–579

    PubMed  CAS  Google Scholar 

  • Hildebrand JG, Shepherd GM (1997) Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu Rev Neurosci 20:595–631

    PubMed  CAS  Google Scholar 

  • Hölldobler B, Carlin NF (1987) Anonymity and specificity in the chemical communication signals of social insects. J Comp Physiol A Sens Neural Behav Physiol 161:567–581

    Google Scholar 

  • Houck LD (2009) Pheromone communication in amphibians and reptiles. Annu Rev Physiol 71:161–176

    PubMed  CAS  Google Scholar 

  • Houck LD, Reagan NL (1990) Male courtship pheromones increase female receptivity in a plethodontid salamander. Anim Behav 39:729–734

    Google Scholar 

  • Hudson R (1993) Olfactory imprinting. Curr Opin Neurobiol 3:548–552

    PubMed  CAS  Google Scholar 

  • Hudson R, Distel H (1986) Pheromonal release of suckling in rabbits does not depend on the vomeronasal organ. Physiol Behav 37:123–128

    PubMed  CAS  Google Scholar 

  • Hurst JL (1993) The priming effects of urine substrate marks on interactions between male house mice, Mus musculus domesticus Schwarz and Schwarz. Anim Behav 45:55–81

    Google Scholar 

  • Hurst JL (2009) Female recognition and assessment of males through scent. Behav Brain Res 200:295–303

    PubMed  CAS  Google Scholar 

  • Jefferis GSXE, Potter CJ, Chan AI, Marin EC, Rohlfing T, Maurer CR, Luo LQ (2007) Comprehensive maps of Drosophila higher olfactory centers: spatially segregated fruit and pheromone representation. Cell 128:1187–1203

    PubMed  CAS  Google Scholar 

  • Johnson ME, Atema J (2005) The olfactory pathway for individual recognition in the American lobster Homarus americanus. J Exp Biol 208:2865–2872

    PubMed  Google Scholar 

  • Johnson NS, Li W (2010) Understanding behavioral responses of fish to pheromones in natural freshwater environments. J Comp Physiol A Sens Neural Behav Physiol. doi:10.1007/s00359-010-0523-7

  • Johnston RE (2003) Chemical communication in rodents: from pheromones to individual recognition. J Mammal 84:1141–1162

    Google Scholar 

  • Johnston RE (2005) Communication by mosaic signals: individual recognition and underlying neural mechanisms. In: Mason RT, LeMaster MP, Müller-Schwarze D (eds) Chemical signals in vertebrates, vol 10. Springer, New York, pp 269–282

    Google Scholar 

  • Karlson P, Lüscher M (1959) ‘Pheromones’: a new term for a class of biologically active substances. Nature 183:55–56

    PubMed  CAS  Google Scholar 

  • Kaupp UB (2010) Olfactory signalling in vertebrates and insects: differences and commonalities. Nat Rev Neurosci 11:188–200. doi:10.1038/nrn2789

    PubMed  CAS  Google Scholar 

  • Keller M, Baum MJ, Brock O, Brennan PA, Bakker J (2009) The main and the accessory olfactory systems interact in the control of mate recognition and sexual behavior. Behav Brain Res 200:268–276

    PubMed  Google Scholar 

  • Kelly DR (1996) When is a butterfly like an elephant? Chem Biol 3:595–602

    PubMed  CAS  Google Scholar 

  • Kimoto H, Sato K, Nodari F, Haga S, Holy TE, Touhara K (2007) Sex- and strain-specific expression and vomeronasal activity of mouse ESP family peptides. Curr Biol 17:1879–1884

    PubMed  CAS  Google Scholar 

  • Kleineidam CJ, Rossler W (2009) Adaptations in the olfactory system of social Hymenoptera. In: Gadau J, Fewell JH (eds) Organization of insect societies: from genome to sociocomplexity. Harvard Univ Press, Cambridge, pp 195–219

    Google Scholar 

  • Kobayakawa K, Kobayakawa R, Matsumoto H, Oka Y, Imai T, Ikawa M, Okabe M, Ikeda T, Itohara S, Kikusui T, Mori K, Sakano H (2007) Innate versus learned odour processing in the mouse olfactory bulb. Nature 450:503–508. doi:10.1038/nature06281

    PubMed  CAS  Google Scholar 

  • Koene JM, ter Maat A (2001) “Allohormones”: a class of bioactive substances favoured by sexual selection. J Comp Physiol A Sens Neural Behav Physiol 187:323–326

    Google Scholar 

  • Koene JM, ter Maat A (2002) The distinction between pheromones and allohormones—reply. J Comp Physiol A Sens Neural Behav Physiol 188:163–164

    Google Scholar 

  • Kristoffersen L, Hansson BS, Anderbrant O, Larsson MC (2008) Aglomerular hemipteran antennal lobes–basic neuroanatomy of a small nose. Chem Senses 33:771–778. doi:10.1093/chemse/bjn044

    PubMed  Google Scholar 

  • Kwak J, Willse A, Preti G, Yamazaki K, Beauchamp G (2010) In search of the chemical basis for MHC odourtypes. Proc R Soc B. doi:10.1098/rspb.2010.0162

  • Lassance JM, Löfstedt C (2009) Concerted evolution of male and female display traits in the European corn borer, Ostrinia nubilalis. BMC Biol 7:10. doi:10.1186/1741-7007-7-10

    PubMed  Google Scholar 

  • Lazar J, Rasmussen LEL, Greenwood DR, Bang IS, Prestwich GD (2004) Elephant albumin: a multipurpose pheromone shuttle. Chem Biol 11:1093–1100

    PubMed  CAS  Google Scholar 

  • Leal WS, Ishida Y (2008) GP-9 s are ubiquitous proteins unlikely involved in olfactory mediation of social organization in the red imported fire ant, Solenopsis invicta. PLoS ONE 3:e3762. doi:10.1371/journal.pone.0003762

    PubMed  Google Scholar 

  • Leinders-Zufall T, Lane AP, Puche AC, Ma WD, Novotny MV, Shipley MT, Zufall F (2000) Ultrasensitive pheromone detection by mammalian vomeronasal neurons. Nature 405:792–796

    PubMed  CAS  Google Scholar 

  • Leinders-Zufall T, Brennan P, Widmayer P, Chandramani P, Maul-Pavicic A, Jager M, Li XH, Breer H, Zufall F, Boehm T (2004) MHC Class I peptides as chemosensory signals in the vomeronasal organ. Science 306:1033–1037

    PubMed  CAS  Google Scholar 

  • Leinders-Zufall T, Ishii T, Mombaerts P, Zufall F, Boehm T (2009) Structural requirements for the activation of vomeronasal sensory neurons by MHC peptides. Nat Neurosci 12:1551–1558. doi:10.1038/nn.2452

    PubMed  CAS  Google Scholar 

  • Lenoir A, d’Ettorre P, Errard C, Hefetz A (2001) Chemical ecology and social parasitism in ants. Annu Rev Entomol 46:573–599

    PubMed  CAS  Google Scholar 

  • Lévy F, Keller M (2009) Olfactory mediation of maternal behavior in selected mammalian species. Behav Brain Res 200:336–345

    PubMed  Google Scholar 

  • Liebig J (2010) Hydrocarbon profiles indicate fertility and dominance status in ant, bee, and wasp colonies. In: Blomquist GJ, Bagnères A-G (eds) Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge University Press, Cambridge, pp 254–281

    Google Scholar 

  • Liénard MA, Strandh M, Hedenstrom E, Johansson T, Löfstedt C (2008) Key biosynthetic gene subfamily recruited for pheromone production prior to the extensive radiation of Lepidoptera. BMC Evol Biol 8:270. doi:10.1186/1471-2148-8-270

    PubMed  Google Scholar 

  • Lin DY, Zhang SZ, Block E, Katz LC (2005) Encoding social signals in the mouse main olfactory bulb. Nature 434:470–477

    PubMed  CAS  Google Scholar 

  • Lin DY, Shea SD, Katz LC (2006) Representation of natural stimuli in the rodent main olfactory bulb. Neuron 50:937–949

    CAS  Google Scholar 

  • Logan DW, Marton TF, Stowers L (2008) Species specificity in major urinary proteins by parallel evolution. PLoS ONE 3:e3280. doi:10.1371/journal.pone.0003280

    PubMed  Google Scholar 

  • Malnic B, Hirono J, Sato T, Buck LB (1999) Combinatorial receptor codes for odors. Cell 96:713–723

    PubMed  CAS  Google Scholar 

  • Martín J, López P (2010) Condition-dependent pheromone signaling by male rock lizards: more oily scents are more attractive. Chem Senses 35:253–262. doi:10.1093/chemse/bjq009

    PubMed  Google Scholar 

  • Mason RT (1993) Chemical ecology of the red-sided garter snake, Thamnophis sirtalis parietalis. Brain Behav Evol 41:261–268

    PubMed  CAS  Google Scholar 

  • Maynard Smith J, Harper D (2003) Animal signals. Oxford University Press, Oxford

    Google Scholar 

  • Moncho-Bogani J, Lanuza E, Hernandez A, Novejarque A, Martinez-Garcia F (2002) Attractive properties of sexual pheromones in mice: innate or learned? Physiol Behav 77:167–176

    PubMed  CAS  Google Scholar 

  • Munger SD, Leinders-Zufall T, Zufall F (2009) Subsystem organization of the mammalian sense of smell. Annu Rev Physiol 71:115–140

    PubMed  CAS  Google Scholar 

  • Nakagawa T, Vosshall LB (2009) Controversy and consensus: noncanonical signaling mechanisms in the insect olfactory system. Curr Opin Neurobiol 19:284–292

    PubMed  CAS  Google Scholar 

  • Novotny MV (2003) Pheromones, binding proteins and receptor responses in rodents. Biochem Soc Trans 31:117–122

    PubMed  CAS  Google Scholar 

  • Novotny M, Harvey S, Jemiolo B, Alberts J (1985) Synthetic pheromones that promote inter-male aggression in mice. Proc Natl Acad Sci USA 82:2059–2061

    PubMed  CAS  Google Scholar 

  • Ozaki M, Wada-Katsumata A, Fujikawa K, Iwasaki M, Yokohari F, Satoji Y, Nisimura T, Yamaoka R (2005) Ant nestmate and non-nestmate discrimination by a chemosensory sensillum. Science 309:311–314

    PubMed  CAS  Google Scholar 

  • Peele P, Salazar I, Mimmack M, Keverne EB, Brennan PA (2003) Low molecular weight constituents of male mouse urine mediate the pregnancy block effect and convey information about the identity of the mating male. Eur J Neurosci 18:622–628

    PubMed  CAS  Google Scholar 

  • Rasmussen LEL, Lazar J, Greenwood DR (2003) Olfactory adventures of elephantine pheromones. Biochem Soc Trans 31:137–141

    PubMed  CAS  Google Scholar 

  • Restrepo D, Lin WH, Salcedo E, Yarnazaki K, Beauchamp G (2006) Odortypes and MHC peptides: complementary chemosignals of MHC haplotype? Trends Neurosci 29:604–609. doi:10.1016/j.tins.2006.08.001

    PubMed  CAS  Google Scholar 

  • Roberts SA, Simpson DM, Armstrong SD, Davidson AJ, Robertson DH, McLean L, Beynon RJ, Hurst JL (2010) Darcin: a male pheromone that stimulates female memory and sexual attraction to an individual male’s odour. BMC Biol 8:75. doi:10.1186/1741-7007-8-75

    PubMed  Google Scholar 

  • Ruther J, Steidle JLM (2002) “Allohormones”: a new class of bioactive substances or old wine in new skins? J Comp Physiol A Sens Neural Behav Physiol 188:161–162

    Google Scholar 

  • Sanchez-Andrade G, Kendrick KM (2009) The main olfactory system and social learning in mammals: Pheromonal communication in higher vertebrates and its implication for reproductive function. Behav Brain Res 200:323–335

    PubMed  Google Scholar 

  • Sandoz JC, Deisig N, de Brito Sanchez MG, Giurfa M (2007) Understanding the logics of pheromone processing in the honeybee brain: from labeled-lines to across-fiber patterns. Front Behav Neurosci 1:5. doi:10.3389/neuro.08.005.2007

    PubMed  Google Scholar 

  • Schaal B (2008) Social odors and pheromones in mammals. Biofutur 27:41–45

    Google Scholar 

  • Schaal B, Porter RH (1991) Microsmatic humans revisited—the generation and perception of chemical signals. Adv Study Behav 20:135–199

    Google Scholar 

  • Schaal B, Coureaud G, Langlois D, Ginies C, Semon E, Perrier G (2003) Chemical and behavioural characterization of the rabbit mammary pheromone. Nature 424:68–72

    PubMed  CAS  Google Scholar 

  • Schaal B, Coureaud G, Doucet S, Delaunay-El Allam M, Moncomble A-S, Montigny D, Patris B, Holley A (2009) Mammary olfactory signalisation in females and odor processing in neonates: ways evolved by rabbits and humans. Behav Brain Res 200:346–358

    PubMed  Google Scholar 

  • Schaefer ML, Yamazaki K, Osada K, Restrepo D, Beauchamp GK (2002) Olfactory fingerprints for major histocompatibility complex-determined body odors II: relationship among odor maps, genetics, odor composition, and behavior. J Neurosci 22:9513–9521

    PubMed  CAS  Google Scholar 

  • Sherman PW, Reeve HK, Pfennig DW (1997) Recognition systems. In: Krebs JR, Davies NB (eds) Behavioural ecology: an evolutionary approach, 4th edn. Blackwell Science, Oxford, pp 69–96

    Google Scholar 

  • Sisler SP, Sorensen PW (2008) Common carp and goldfish discern conspecific identity using chemical cues. Behaviour 145:1409–1425

    Google Scholar 

  • Slagsvold T, Hansen B, Johannessen L, Lifjeld J (2002) Mate choice and imprinting in birds studied by cross-fostering in the wild. Proc R Soc Lond B Biol Sci 269:1449

    Google Scholar 

  • Slessor KN, Winston ML, Le Conte Y (2005) Pheromone communication in the honeybee (Apis mellifera L.). J Chem Ecol 31:2731–2745

    Google Scholar 

  • Smadja C, Butlin RK (2009) On the scent of speciation: the chemosensory system and its role in premating isolation. Heredity 102:77–97

    PubMed  CAS  Google Scholar 

  • Sorensen PW, Stacey NE (1999) Evolution and specialization of fish hormonal pheromones. In: Johnston RE, Müller-Schwarze D, Sorensen PW (eds) Advances in chemical signals in vertebrates. Kluwer Academic/Plenum Press, New York, pp 15–48

    Google Scholar 

  • Sorensen PW, Christensen TA, Stacey NE (1998) Discrimination of pheromonal cues in fish: emerging parallels with insects. Curr Opin Neurobiol 8:458–467

    PubMed  CAS  Google Scholar 

  • Sorensen PW, Scott AP, Kihslinger RL (2000) How common hormonal metabolites function as specific pheromones in the goldfish. In: Norberg B, Kjesbu OS, Taranger GL, Andersson E, Stefansson SO (eds) Proceedings of the sixth international symposium on the reproductive physiology of fish. Bergen, Norway, pp 125–129

    Google Scholar 

  • Spehr M, Munger SD (2009) Olfactory receptors: G protein-coupled receptors and beyond. J Neurochem 109:1570–1583

    PubMed  CAS  Google Scholar 

  • Spehr M, Kelliher KR, Li XH, Boehm T, Leinders-Zufall T, Zufall F (2006) Essential role of the main olfactory system in social recognition of major histocompatibility complex peptide ligands. J Neurosci 26:1961–1970. doi:10.1523/jneurosci.4939-05.2006

    PubMed  CAS  Google Scholar 

  • Stacey NE, Sorensen PW (2006) Reproductive pheromones. In: Sloman KA, Wilson RW, Balshine S (eds) Fish physiology, vol 24: Behaviour and physiology of fish. Academic Press, Elsevier, pp 359–412

  • Strausfeld NJ, Hildebrand JG (1999) Olfactory systems: common design, uncommon origins? Curr Opin Neurobiol 9:634–639

    PubMed  CAS  Google Scholar 

  • Su CY, Menuz K, Carlson JR (2009) Olfactory perception: receptors, cells, and circuits. Cell 139:45–59

    PubMed  CAS  Google Scholar 

  • Teicher MH, Stewart WB, Kauer JS, Shepherd GM (1980) Suckling pheromone stimulation of a modified glomerular region in the developing rat olfactory-bulb revealed by the 2-deoxyglucose method. Brain Res 194:530–535

    PubMed  CAS  Google Scholar 

  • Tibbetts EA, Dale J (2007) Individual recognition: it is good to be different. Trends Ecol Evol 22:529–537

    PubMed  Google Scholar 

  • Touhara K, Vosshall LB (2009) Sensing odorants and pheromones with chemosensory receptors. Annu Rev Physiol 71:307–332

    PubMed  CAS  Google Scholar 

  • van Zweden JS, d’Ettorre P (2010) Nestmate recognition in social insects and the role of hydrocarbons. In: Blomquist GJ, Bagnères A-G (eds) Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge University Press, Cambridge, pp 222–243

    Google Scholar 

  • Vergoz V, McQuillan HJ, Geddes LH, Pullar K, Nicholson BJ, Paulin MG, Mercer AR (2009) Peripheral modulation of worker bee responses to queen mandibular pheromone. Proc Natl Acad Sci USA 106:20930–20935. doi:10.1073/pnas.0907563106

    PubMed  CAS  Google Scholar 

  • Vosshall LB, Stocker RE (2007) Molecular architecture of smell and taste in Drosophila. Annu Rev Neurosci 30:505–533

    PubMed  CAS  Google Scholar 

  • Wang SP, Sato K, Giurfa M, Zhang SW (2008) Processing of sting pheromone and its components in the antennal lobe of the worker honeybee. J Insect Physiol 54:833–841

    PubMed  CAS  Google Scholar 

  • Wilson EO (1970) Chemical communication within animal species. In: Sondheimer E (ed) Chemical ecology, vol 9. Academic Press, New York, pp 133–155

    Google Scholar 

  • Wood RI, Swann JM (2000) Neuronal integration of chemosensory and hormonal signals in the control of male sexual behavior. In: Wallen K, Schneider JE (eds) Reproduction in context: social and environmental influences on reproductive physiology and behavior. MIT Press, Cambridge, pp 423–444

    Google Scholar 

  • Woodley SK (2010) Pheromonal communication in amphibians. J Comp Physiol A Sens Neural Behav Physiol. doi:10.1007/s00359-010-0540-6

  • Wyatt TD (2003) Pheromones and animal behaviour: communication by smell and taste. Cambridge University Press, Cambridge

    Google Scholar 

  • Wyatt TD (2005) Pheromones: convergence and contrasts in insects and vertebrates. In: Mason RT, LeMaster MP, Müller-Schwarze D (eds) Chemical signals in vertebrates, vol 10. Springer, New York, pp 7–20

    Google Scholar 

  • Wyatt TD (2009) Fifty years of pheromones. Nature 457:262–263

    PubMed  CAS  Google Scholar 

  • Xue BY, Rooney AP, Kajikawa M, Okada N, Roelofs WL (2007) Novel sex pheromone desaturases in the genomes of corn borers generated through gene duplication and retroposon fusion. Proc Natl Acad Sci USA 104:4467–4472

    PubMed  CAS  Google Scholar 

  • Yamagata N, Nishino H, Mizunami M (2006) Pheromone-sensitive glomeruli in the primary olfactory centre of ants. Proc R Soc B 273:2219–2225

    PubMed  CAS  Google Scholar 

  • Yamagata N, Nishino H, Mizunami M (2007) Neural pathways for the processing of alarm pheromone in the ant brain. J Comp Neurol 505:424–442

    PubMed  Google Scholar 

  • Zube C, Kleineidam CJ, Kirschner S, Neef J, Rossler W (2008) Organization of the olfactory pathway and odor processing in the antennal lobe of the ant Camponotus floridanus. J Comp Neurol 506:425–441. doi:10.1002/cne.21548

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank two anonymous referees for their helpful comments, and PB Brennan, P d’Ettorre, M De Facci and Lund colleagues, J Kwak, and PW Sorensen, for their contributions and comments on a draft of this paper. Ethical standards: Review n/a.

Conflict of interest

The author declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tristram D. Wyatt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wyatt, T.D. Pheromones and signature mixtures: defining species-wide signals and variable cues for identity in both invertebrates and vertebrates. J Comp Physiol A 196, 685–700 (2010). https://doi.org/10.1007/s00359-010-0564-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-010-0564-y

Keywords

Navigation