Skip to main content
Log in

Contrast sensitivity in a harbor seal (Phoca vitulina)

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

In this study, the contrast sensitivity function (CSF) of one harbor seal was determined behaviorally in a go-/no-go-experiment at an ambient light of 0.9 lx in air. Contrast sensitivity was assessed as the reciprocal value of the threshold contrast for spatial frequencies varying between 0.03 and 1.5 cycles/deg, which were displayed with contrast ranging from 0.02 to 1 on a TFT monitor with a mean luminance of 3.8 cd/m². The CSF of the harbor seal shows the general characteristics described for other species with a peak at an intermediate frequency, a low frequency roll-off and a high frequency cut-off towards the harbor seal’s resolution limit determined in a previous study. The position of the CSF’s peak lies at approximately 0.5 cycles/deg and adopts an absolute height of 40. These results compare well with the cat’s CSF assessed at a comparable adaptation light which might reflect similarities in lifestyle and optics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bilotta J, Powers MK (1991) Spatial contrast sensitivity of goldfish: mean luminance, temporal frequency and a new psychophysical technique. Vis Res 31(3):577–585

    Article  CAS  PubMed  Google Scholar 

  • Birch D, Jacobs GH (1979) Spatial contrast sensitivity in albino and pigmented rats. Vis Res 19:933–937

    Article  CAS  PubMed  Google Scholar 

  • Bisti S, Maffei L (1974) Behavioural contrast sensitivity of the cat in various visual meridians. J Physiol 241:201–210

    CAS  PubMed  Google Scholar 

  • Blake R (1982) Binocular vision in normal and stereoblind subjects. Am J Optom Physiol Opt 59(12):969–975

    CAS  PubMed  Google Scholar 

  • Blake R, Cool SJ, Crawford MLJ (1974) Visual resolution in the cat. Vis Res 14:1211–1217

    Article  CAS  PubMed  Google Scholar 

  • Campbell FW, Kulikowski JJ, Levinson J (1966) The effect of orientation on the visual resolution of gratings. J Physiol 187:427–436

    CAS  PubMed  Google Scholar 

  • Campbell FW, Maffei L, Piccolino M (1973) The contrast sensitivity of the cat. J Physiol 229:719–731

    CAS  PubMed  Google Scholar 

  • Cronin TW (2006) Invertebrate vision in water. In: Warrant EJ, Nilsson D-E (eds) Invertebrate vision. University Press, Cambridge, pp 211–249

    Google Scholar 

  • Davis RW, Wartzok D, Elsner R, Stone H (1992) A small video camera attached to a Weddell seal: a new way to observe diving behavior. In: Thomas J et al (eds) Marine mammal sensory systems. Plenum, New York, pp 631–642

    Google Scholar 

  • Davis RW, Fuiman LA, Williams TM, Collier SO, Hagey WP, Kanatous SB, Kohin S, Horning M (1999) Hunting behaviour of a marine mammal beneath the Antarctic fast ice. Science 283:993–996

    Article  CAS  PubMed  Google Scholar 

  • De Valois RL, Morgan H, Snodderly DM (1974) Psychophysical studies of monkey vision—III. Spatial luminance contrast sensitivity tests of macaque and human observers. Vis Res 14:75–81

    Article  PubMed  Google Scholar 

  • Duntley SQ (1963) Light in the sea. J Opt Soc Am 53:214–233

    Article  Google Scholar 

  • Gellermann LW (1933) Chance orders of alternating stimuli in visual discrimination experiments. J Gen Psychol 42:206–208

    Google Scholar 

  • Ginsburg AP, Evans DW, Sekule R, Harp SA (1982) Contrast sensitivity predicts pilots’ performance in aircraft simulators. Am J Optom Physiol Opt 59(1):105–109

    CAS  PubMed  Google Scholar 

  • Hanke FD, Dehnhardt G (2009) Aerial visual acuity in harbor seals (Phoca vitulina) as a function of luminance. J Comp Physiol A 195:643–650

    Article  Google Scholar 

  • Hanke FD, Dehnhardt G, Schaeffel F, Hanke W (2006) Corneal topography, refractive state, and accommodation in harbor seals (Phoca vitulina). Vis Res 46:837–847

    Article  PubMed  Google Scholar 

  • Hanke FD, Hanke W, Hoffman K-P, Dehnhardt G (2008a) Optokinetic nystagmus in harbor seals (Phoca vitulina). Vis Res 48(2):304–315

    Article  PubMed  Google Scholar 

  • Hanke FD, Kröger RHH, Siebert U, Dehnhardt G (2008b) Multifocal lenses in a monochromat: the harbour seal. J Exp Biol 211:3315–3322

    Article  PubMed  Google Scholar 

  • Hanke FD, Hanke W, Scholtyssek C, Dehnhardt G (2009a) Basic mechanisms in pinniped vision. Exp Brain Res 199(3):299–311

    Article  Google Scholar 

  • Hanke FD, Peichl L, Dehnhardt G (2009b) Retinal ganglion cell topography in juvenile harbor seals (Phoca vitulina). Brain Behav Evol 74:102–109

    Article  PubMed  Google Scholar 

  • Hanke W, Römer R, Dehnhardt G (2006) Visual fields and eye movements in a harbor seal (Phoca vitulina). Vis Res 46:2804–2814

    Article  PubMed  Google Scholar 

  • Harmening WM, Nikolay P, Orlowski J, Wagner H (2009) Spatial contrast sensitivity and grating acuity of barn owls. J Vis 9(7):1–12

    Article  Google Scholar 

  • Hobson ES (1966) Visual orientation and feeding in seals and sea lions. Nature 210:326–327

    Article  Google Scholar 

  • Hodos W, Potocki A, Ghim MM, Gaffney M (2003) Temporal modulation of spatial contrast vision in pigeons (Columba livia). Vis Res 43:761–767

    Article  PubMed  Google Scholar 

  • Jacobs GH (1977) Visual capacities of the owl monkey (Aotus trivirgatus)—II. Spatial contrast sensitivity. Vis Res 17:821–825

    Article  CAS  PubMed  Google Scholar 

  • Jamieson GS, Fisher HD (1972) The pinniped eye: a review. In: Harrison RJ (ed) Functional anatomy of marine mammals. Academic Press, London, pp 245–261

    Google Scholar 

  • Kang I, Reem RE, Kaczmarowski AL, Malpeli JG (2009) Contrast sensitivity of cats and humans in scotopic and mesopic conditions. J Neurophysiol 102(2):831–840

    Article  PubMed  Google Scholar 

  • Kröger RHH (2008) The physics of light in air and water. In: Thewissen JGM, Nummela S (eds) Sensory evolution on the threshold—adaptations in secondarily aquatic vertebrates. University of California Press, Berkeley, pp 113–119

    Google Scholar 

  • Kröger RHH, Katzir G (2008) Comparative anatomy and physiology of vision in aquatic tetrapods. In: Thewissen JGM, Nummela S (eds) Sensory evolution on the threshold—adaptations in secondarily aquatic vertebrates. University of California Press, Berkeley, pp 121–147

    Google Scholar 

  • Legg CR (1984) Contrast sensitivity at low spatial frequencies in the hooded rat. Vis Res 24(2):159–161

    Article  CAS  PubMed  Google Scholar 

  • Maffei L, Campbell FW (1970) Neurophysiological localization of the vertical and horizontal visual coordinates in man. Science 167:386–387

    Article  CAS  PubMed  Google Scholar 

  • Mauck B, Dehnhardt G (1997) Mental rotation in a California sea lion (Zalophus californianus). J Exp Biol 200:1309–1316

    CAS  PubMed  Google Scholar 

  • Merigan WH (1976) The contrast sensitivity of the squirrel monkey (Saimiri sciureus). Vis Res 16:375–379

    Article  CAS  PubMed  Google Scholar 

  • Nordmann JP, Freeman RD, Casanova C (1992) Contrast sensitivity in amblyopia: masking effects of noise. Invest Ophthalmol Vis Sci 33(10):2975–2985

    CAS  PubMed  Google Scholar 

  • Northmore DPM, Dvorak CA (1979) Contrast sensitivity and acuity of the goldfish. Vis Res 19:255–261

    Article  CAS  PubMed  Google Scholar 

  • Nye PW (1968) The binocular acuity of the pigeon measured in terms of the modulation transfer function. Vis Res 8:1041–1053

    Article  CAS  PubMed  Google Scholar 

  • Olzak LA, Thomas JP (1986) Seeing spatial patterns. In: Boff K, Kaufman L, Thomas JP (eds) Handbook of perception and human performance. Wiley, New York, pp 7.1–7.56

  • Owsley C, Sloane ME (1987) Contrast sensitivity, acuity, and the perception of ‘real-world’ targets. Br J Ophthalmol 71:791–796

    Article  CAS  PubMed  Google Scholar 

  • Pak MA (1984) Ocular refraction and visual contrast sensitivity of the rabbit, determined by the VECP. Vis Res 24(4):341–345

    Article  CAS  PubMed  Google Scholar 

  • Pasternak T, Merigan WH (1981) The luminance dependence of spatial vision in the cat. Vis Res 21:1333–1339

    Article  CAS  PubMed  Google Scholar 

  • Petry HM, Fox R, Casagrande VA (1984) Spatial contrast sensitivity of the tree shrew. Vis Res 24(9):1037–1042

    Article  CAS  PubMed  Google Scholar 

  • Reuter T, Peichl L (2008) Structure and function of the retina in aquatic tetrapods. In: Thewissen JGM, Nummela S (eds) Sensory evolution on the threshold—adaptations in secondarily aquatic vertebrates. University of California Press, Berkeley, pp 149–172

    Google Scholar 

  • Reymond L, Wolfe J (1981) Behavioural determination of the contrast sensitivity function of the eagle Aquila audax. Vis Res 21:263–271

    Article  CAS  PubMed  Google Scholar 

  • Scholtyssek C, Kelber A, Dehnhardt G (2008) Brightness discrimination in the harbor seal (Phoca vitulina). Vis Res 48:96–103

    Article  PubMed  Google Scholar 

  • Schusterman RJ, Balliet RF (1970) Visual acuity of the harbour seal and the Steller sea lion under water. Nature 226:563–564

    Article  CAS  PubMed  Google Scholar 

  • Stich KP, Dehnhardt G, Mauck B (2000) Mental rotation of perspective stimuli in a California sea lion (Zalophus californianus). Brain Behav Evol 61:102–112

    Article  Google Scholar 

  • Uhlrich DJ, Essock EA, Lehmkuhle S (1981) Cross-species correspondence of spatial contrast sensitivity functions. Behav Brain Res 2:291–299

    Article  CAS  PubMed  Google Scholar 

  • Warrant EJ, Locket NA (2004) Vision in the deep sea. Biol Rev 79:671–712

    Article  PubMed  Google Scholar 

  • Weiffen M, Möller B, Mauck B, Dehnhardt G (2006) Effect of water turbidity on the visual acuity of harbor seals (Phoca vitulina). Vis Res 46:1777–1783

    Article  PubMed  Google Scholar 

  • Woods RL, Wood JM (1995) The role of contrast sensitivity charts and contrast letter charts in clinical practice. Clin Exp Ophthalmol 78(2):43–51

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the valuable help of Viljami Salmela (Helsinki, Finland). Thanks is also expressed to Sophie Fiedler for assistance during data collection and to Christopher D. Marshall (Galveston, TX, USA) for critically reading the manuscript. This study was financially supported by a grant of the Studienstiftung des deutschen Volkes (2005 SA 0969) to FDH and of the Deutsche Forschungsgemeinschaft (SFB 509, DE 538/10-1) as well as the Volkswagenstiftung to GD. The experiments are in line with the current German law on the protection of animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederike D. Hanke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanke, F.D., Scholtyssek, C., Hanke, W. et al. Contrast sensitivity in a harbor seal (Phoca vitulina). J Comp Physiol A 197, 203–210 (2011). https://doi.org/10.1007/s00359-010-0600-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-010-0600-y

Keywords

Navigation