Skip to main content
Log in

The environmental physiology of Antarctic terrestrial nematodes: a review

  • Mini Review
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

The environmental physiology of terrestrial Antarctic nematodes is reviewed with an emphasis on their cold-tolerance strategies. These nematodes are living in one of the most extreme environments on Earth and face a variety of stresses, including low temperatures and desiccation. Their diversity is low and declines with latitude. They show resistance adaptation, surviving freezing and desiccation in a dormant state but reproducing when conditions are favourable. At high freezing rates in the surrounding medium the Antarctic nematode Panagrolaimus davidi freezes by inoculative freezing but can survive intracellular freezing. At slow freezing rates this nematode does not freeze but undergoes cryoprotective dehydration. Cold tolerance may be aided by rapid freezing, the production of trehalose and by an ice-active protein that inhibits recrystallisation. P. davidi relies on slow rates of water loss from its habitat, and can survive in a state of anhydrobiosis, perhaps aided by the ability to synthesise trehalose. Teratocephalus tilbrooki and Ditylenchus parcevivens are fast-dehydration strategists. Little is known of the osmoregulatory mechanisms of Antarctic nematodes. Freezing rates are likely to vary with water content in Antarctic soils. Saturated soils may produce slow freezing rates and favour cryoprotective dehydration. As the soil dries freezing rates may become faster, favouring freezing tolerance. When the soil dries completely the nematodes survive anhydrobiotically. Terrestrial Antarctic nematodes thus have a variety of strategies that ensure their survival in a harsh and variable environment. We need to more fully understand the conditions to which they are exposed in Antarctic soils and to apply more natural rates of freezing and desiccation to our studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  • Andrássy I (1998) Nematodes in the sixth continent. J Nem Morphol Syst 1:107–186

    Google Scholar 

  • Block W (1994) Terrestrial ecosystems: Antarctica. Polar Biol 14:293–300

    Google Scholar 

  • Brown IM (1993) The influence of low temperature on the Antarctic nematode Panagrolaimus davidi. PhD thesis, University of Otago, New Zealand

  • Caldwell JR (1981) The Signy Island terrestrial reference sites: XIII. Population dynamics of the nematode fauna. Br Antarct Surv Bull 54:33–46

    Google Scholar 

  • Campbell IB, Claridge GGC, Balks MR, Campbell DI (1997) Moisture content in soils of the McMurdo Sound and Dry Valleys region of Antarctica. In: Lyons WB, Howard-Williams C, Hawes I (eds) Ecosystem processes in Antarctic ice-free landscapes. Balkema, Rotterdam, pp 61–76

  • Convey P (1996) The influence of environmental characteristics on life history attributes of Antarctic terrestrial biota. Biol Rev 71:191–225

    Google Scholar 

  • Convey P, Worland MR (2000) Survival of freezing by free-living Antarctic soil nematodes. CryoLetters 21:327–332

    PubMed  Google Scholar 

  • Convey P, Wynn-Williams DD (2002) Antarctic soil nematode response to artificial climate amelioration. Eur J Soil Biol 38:255–259

    Article  Google Scholar 

  • Crowe JH, Hoekstra F, Crowe LM (1992) Anhydrobiosis. Annu Rev Physiol 54:579–599

    Google Scholar 

  • Davey MC, Pickup J, Block W (1992) Temperature variation and its biological significance in fellfield habitats on a maritime Antarctic island. Antarct Sci 4:383–388

    Google Scholar 

  • Duman JG (2001) Antifreeze and ice nucleator proteins in terrestrial arthropods. Annu Rev Physiol 63:327–357

    CAS  PubMed  Google Scholar 

  • Forge TA, MacGuidwin AE (1992) Effects of water potential and temperature on survival of the nematode Meloidogyne hapla in frozen soil. Can J Zool 70:1553–1560

    Google Scholar 

  • Fox AJ, Cooper PR (1994) Measured properties of the Antarctic ice sheet derived from the SCAR Antarctic digital database. Polar Rec 30:201–206

    Google Scholar 

  • Hendriksen NB (1982) Anhydrobiosis in nematodes: studies on Plectus sp. In: Lebrun P, André HM, De Medts A, Grégoire-Wibo C, Wauthy G (eds) New trends in soil biology. Dieu-Brichart, Louvain-la-Neurve, pp 387–394

  • Holmstrup M, Sjursen H (2001) Freeze induced glucose accumulation in the enchytraeid, Fredericia ratzeli, from Greenland. CryoLetters 22:273–276

    CAS  PubMed  Google Scholar 

  • Holmstrup M, Westh P (1994) Dehydration of earthworm cocoons exposed to cold: a novel cold hardiness mechanism. J Comp Physiol B 164:312–315

    Google Scholar 

  • Holmstrup M, Bayley M, Ramløv H (2002) Supercool or dehydrate? An experimental analysis of overwintering strategies in small permeable arctic invertebrates. Proc Natl Acad Sci USA 99:5716–5720

    CAS  PubMed  Google Scholar 

  • Kennedy AD (1993) Water as a limiting factor in the Antarctic terrestrial environment: a biogeographical synthesis. Arctic Alpine Res 25:308–315

    Google Scholar 

  • Knight CA, Duman JG (1986) Inhibition of recrystallization of ice by insect thermal hysteresis proteins: a possible cryoprotective role. Cryobiology 23:256–262

    CAS  Google Scholar 

  • Knight CA, Hallett J, DeVries AL (1988) Solute effects on ice recrystallisation: an assessment technique. Cryobiology 25:55–60

    CAS  PubMed  Google Scholar 

  • Knight CA, Wen D, Laursen RA (1995) Nonequilibrium antifreeze peptides and the recrystallization of ice. Cryobiology 32:23–34

    CAS  PubMed  Google Scholar 

  • Lee RE (1991) Principles of insect low temperature tolerance. In: Lee RE, Denlinger DL (eds) Insects at low temperatures. Chapman and Hall, New York, pp 17–46

  • Maslen NR (1979) Additions to the nematode fauna of the Antarctic region with keys to taxa. Br Antarct Surv Bull 49:207–229

    Google Scholar 

  • Maslen NR (1981) The Signy Island terrestrial reference sites. XII. Population ecology of nematodes with additions to the fauna. Br Antarct Surv Bull 53:57–75

    Google Scholar 

  • Olsen TM, Duman JG (1997a) Maintenance of the supercooled state in overwintering pyrochroid beetle larvae, Dendroides canadensis: role of hemolymph ice nucleators and antifreeze proteins. J Comp Physiol B 167:105–113

    Article  Google Scholar 

  • Olsen TM, Duman JG (1997b) Maintenance of the supercooled state in the gut of overwintering pyrochroid beetle larvae, Dendroides canadensis: role of gut ice nucleators and antifreeze proteins. J Comp Physiol B 167:114–122

    Article  Google Scholar 

  • Overhoff A, Freckman DW, Virginia RA (1993) Life cycle of the microbivorous Antarctic Dry Valley nematode Scottnema lindsayae (Timm 1971). Polar Biol 13:151–156

    Google Scholar 

  • Pickup J (1990a) Seasonal variation in the cold hardiness of three species of free-living Antarctic nematodes. Funct Ecol 4:257–264

    Google Scholar 

  • Pickup J (1990b) Seasonal variation in the cold-hardiness of a free-living predatory nematode, Coomansus gerlachei (Mononchidae). Polar Biol 10:307–315

    Google Scholar 

  • Pickup J (1990c) Strategies of cold-hardiness in three species of Antarctic dorylaimid nematodes. J Comp Physiol B 160:167–173

    Google Scholar 

  • Pickup J, Rothery P (1991) Water-loss and anhydrobiotic survival in nematodes of Antarctic fellfields. Oikos 61:379–388

    Google Scholar 

  • Porazinska DL, Wall DH, Virginia RA (2002) Invertebrates in ornithogenic soils on Ross Island, Antarctica. Polar Biol 25:569–574

    Google Scholar 

  • Ramløv H, Wharton DA, Wilson PW (1996) Recrystallization in a freezing-tolerant Antarctic nematode, Panagrolaimus davidi, and an alpine weta, Hemideina maori (Orthoptera, Stenopelmatidae). Cryobiology 33:607–613

    PubMed  Google Scholar 

  • Shepard ML, Goldston CS, Cocks FH (1976) The H2O-NaCl-glycerol phase diagram and its application in cryobiology. Cryobiology 13:9–23

    CAS  PubMed  Google Scholar 

  • Sinclair BJ (2001) On the distribution of terrestrial invertebrates at Cape Bird, Ross Island, Antarctica. Polar Biol 24:394–400

    Article  Google Scholar 

  • Sinclair BJ, Sjursen H (2001a) Terrestrial invertebrate abundance across a habitat transect in Keble Valley, Ross Island, Antarctica. Pedobiologia 45:134–145

    Google Scholar 

  • Sinclair BJ, Sjursen H (2001b) Cold tolerance of the Antarctic springtail Gomphiocephalus hodgsoni (Collembola, Hypogastruridae). Antarct Sci 13:271–279

    Google Scholar 

  • Sjursen H, Sinclair BJ (2002) On the cold hardiness of Stereotydeus mollis (Acari: Prostigmata) from Ross Island, Antarctica. Pedobiologia 46:188–195

    Google Scholar 

  • Sohlenius B, Boström S, Hisrchfelder A (1996) Distribution patterns of microfauna (nematodes, rotifers and tardigrades) on nunataks in Dronning Maud Land, East Antarctica. Polar Biol 16:191–200

    Article  Google Scholar 

  • Storey KB, Storey JM (1992) Natural freeze tolerance in ectothermic vertebrates. Annu Rev Physiol 54:619–637

    CAS  PubMed  Google Scholar 

  • Thompson DP, Geary TG (2002) Excretion/secretion, ionic and osmotic regulation. In: Lee DL (ed) The biology of nematodes. Taylor & Francis, London, pp 291–320

  • Treonis AM, Wall DH, Virginia RA (1999) Invertebrate biodiversity in Antarctic Dry Valley soils and sediments. Ecosystems 2:482–492

    PubMed  Google Scholar 

  • Treonis AM, Wall DH, Virginia RA (2000) The use of anhydrobiosis by soil nematodes in the Antarctic Dry Valleys. Funct Ecol 14:460–467

    Article  Google Scholar 

  • Viglierchio DR (1974) Osmoregulation and electrolyte uptake in Antarctic nematodes. Trans Am Microsc Soc 93:325–338

    CAS  PubMed  Google Scholar 

  • Virginia RA, Wall DH (1999) How soils structure communities in the Antarctic dry valleys. BioScience 49:973–983

    Google Scholar 

  • Walton DWH (1984) The terrestrial environment. In: Laws RM (ed) Antarctic ecology. Academic Press, London, pp 1–60

  • Weast RC (1989) Handbook of Chemistry and Physics. CRC Press, Cleveland

  • Wharton DA (1986) A functional biology of nematodes. Croom Helm, London

  • Wharton DA (1994) Freezing avoidance in the eggs of the Antarctic nematode Panagrolaimus davidi. Fundam Appl Nematol 17:239–243

    Google Scholar 

  • Wharton DA (1995) Cold tolerance strategies in nematodes. Biol Rev 70:161–185

    Google Scholar 

  • Wharton DA (1997) Survival of low temperatures by the Antarctic nematode Panagrolaimus davidi. In: Lyons WB, Howard-Williams C, Hawes I (eds) Ecosystem processes in Antarctic ice-free landscapes. Balkema, Rotterdam, pp 57–60

  • Wharton DA (2002a) Life at the limits: organisms in extreme environments. Cambridge University Press, Cambridge

  • Wharton DA (2002b) Survival strategies. In: Lee DL (ed) The biology of nematodes. Taylor & Francis, London, pp 389–411

  • Wharton DA, Barclay S (1993) Anhydrobiosis in the free-living Antarctic nematode Panagrolaimus davidi. Fundam Appl Nematol 16:17–22

    Google Scholar 

  • Wharton DA, Block W (1993) Freezing tolerance of some Antarctic nematodes. Funct Ecol 7:578–584

    Google Scholar 

  • Wharton DA, Block W (1997) Differential scanning calorimetry studies on an Antarctic nematode (Panagrolaimus davidi) which survives intracellular freezing. Cryobiology 34:114–121

    Article  CAS  PubMed  Google Scholar 

  • Wharton DA, Brown IM (1989) A survey of terrestrial nematodes from the McMurdo Sound region, Antarctica. N Z J Zool 16:467–470

    Google Scholar 

  • Wharton DA, Brown IM (1991) Cold tolerance mechanisms of the Antarctic nematode Panagrolaimus davidi. J Exp Biol 155:629–641

    Google Scholar 

  • Wharton DA, Ferns DJ (1995) Survival of intracellular freezing by the Antarctic nematode Panagrolaimus davidi. J Exp Biol 198:1381–1387

    PubMed  Google Scholar 

  • Wharton DA, To NB (1996) Osmotic stress effects on the freezing tolerance of the Antarctic nematode Panagrolaimus davidi. J Comp Physiol B 166:344–349

    Google Scholar 

  • Wharton DA, Worland MR (1998) Ice nucleation activity in the freezing-tolerant Antarctic nematode Panagrolaimus davidi. Cryobiology 36:279–286

    Article  Google Scholar 

  • Wharton DA, Judge KF, Worland MR (2000) Cold acclimation and cryoprotectants in a freeze-tolerant Antarctic nematode, Panagrolaimus davidi. J Comp Physiol B 170:321–327

    CAS  PubMed  Google Scholar 

  • Wharton DA, Goodall G, Marshall CJ (2002) Freezing rate affects the survival of a short-term freezing stress in Panagrolaimus davidi, an Antarctic nematode that survives intracellular freezing. CryoLetters 23:5–10

    CAS  PubMed  Google Scholar 

  • Wharton DA, Goodall G, Marshall CJ (2003) Freezing survival and cryoprotective dehydration as cold tolerance mechanisms in the Antarctic nematode Panagrolaimus davidi. J Exp Biol 206:215–221

    Article  PubMed  Google Scholar 

  • Womersley C (1987) A reevaluation of strategies employed by nematode anhydrobiotes in relation to their natural environment. In: Veech JA, Dickson DW (eds) Vistas on nematology. Society of Nematologists, Hyattsville, Maryland, pp 165–173

  • Womersley C, Ching C (1989) Natural dehydration regimes as a prerequisite for the successful induction of anhydrobiosis in the nematode Rotylenchus reniformis. J Exp Biol 143:359–372

    CAS  PubMed  Google Scholar 

  • Wright DJ, Newall DR (1976) Nitrogen excretion, osmotic and ionic regulation in nematodes. In: Croll NA (ed) The organisation of nematodes. Academic Press, New York, pp 163–210

  • Wright DJ, Newall DR (1980) Osmotic and ionic regulation in nematodes. In: Zuckerman BM (ed) Nematodes as biological models. Academic Press, New York, pp 143–164

Download references

Acknowledgements

I am grateful to Antarctica New Zealand who have supported my visits to Antarctica. Our current work on the ice active proteins of Antarctic nematodes is funded by the Marsden Fund of the Royal Society of New Zealand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Wharton.

Additional information

Communicated by: I.D. Hume

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wharton, D.A. The environmental physiology of Antarctic terrestrial nematodes: a review. J Comp Physiol B 173, 621–628 (2003). https://doi.org/10.1007/s00360-003-0378-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-003-0378-0

Keywords

Navigation