Skip to main content

Advertisement

Log in

Benefits of inoculation of the common bean (Phaseolus vulgaris) crop with efficient and competitive Rhizobium tropici strains

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Cropping in low fertility soils, especially those poor in N, contributes greatly to the low common bean (Phaseolus vulgaris L.) yield, and therefore the benefits of biological nitrogen fixation must be intensively explored to increase yields at a low cost. Six field experiments were performed in oxisols of Paraná State, southern Brazil, with a high population of indigenous common bean rhizobia, estimated at a minimum of 103 cells g–1 soil. Despite the high population, inoculation allowed an increase in rhizobial population and in nodule occupancy, and further increases were obtained with reinoculation in the following seasons. Thus, considering the treatments inoculated with the most effective strains (H 12, H 20, PRF 81 and CIAT 899), nodule occupancy increased from an average of 28% in the first experiment to 56% after four inoculation procedures. The establishment of the selected strains increased nodulation, N2 fixation rates (evaluated by total N and N-ureide) and on average for the six experiments the strains H 12 and H 20 showed increases of 437 and 465 kg ha–1, respectively,in relation to the indigenous rhizobial population. A synergistic effect between low levels of N fertilizer and inoculation with superior strains was also observed, resulting in yield increases in two other experiments. The soil rhizobial population decreased 1 year after the last cropping, but remained high in the plots that had been inoculated. DGGE analysis of soil extracts showed that the massive inoculation apparently did not affect the composition of the bacterial community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andrade DS, Hamakawa PJ (1994) Estimativa do número de células viáveis de rizóbio no solo e em inoculantes por infecção em plantas. In: Hungria M, Araujo RS (eds) Manual de métodos empregados em estudos de microbiologia agrícola. EMBRAPA-SPI, Brasília, pp 63–94

  • Andrade DS, Hungria M (2002) Maximizing the contribution of biological nitrogen fixation in tropical legume crops. In: Finan TM, O’Brian MR, Layzell DB, Vessey JK, Newton W (eds) Nitrogen fixation, global perspectives. CABIO, London, pp 341–345

  • Anyango B, Wilson KL, Beynon JL, Giller KE (1995) Diversity of rhizobia nodulating Phaseolus vulgaris L. in two Kenyan soils with contrasting pHs. Appl Environ Microbiol 61:4016–4021

    Google Scholar 

  • Buttery BR, Park SJ, Findlay WJ (1987) Growth and yield of white bean (Phaseolus vulgaris L.) in response to nitrogen, phosphorus and potassium fertilizer and to inoculation with Rhizobium. Can J Plant Sci 67:425–432

    Google Scholar 

  • CONAB (Companhia Nacional de Abastecimento) (2002) Análise conjuntural de 2002. http://www.conab.gov.br. Retrieved Jan 2003

  • Gomes NCM, Heuer H, Schönfeld J, Costa R, Mendonça-Hagler L, Smalla K (2001) Bacterial diversity of the rhizosphere of maize (Zea mays) grown in tropical soil studied by temperature gradient gel electrophoresis. Plant Soil 232:167–180

    Article  Google Scholar 

  • Graham PH (1981) Some problems of nodulation and symbiotic nitrogen fixation in Phaseolus vulgaris L.: a review. Field Crops Res 4:93–112

    Article  Google Scholar 

  • Graham PH, Draeger KJ, Ferrey ML, Conroy MJ, Hammer BE, Martínez E, Aarons SR, Quinto C (1994) Acid pH tolerance in strains of Rhizobium and Bradyrhizobium, and initial studies on the basis for acid tolerance of Rhizobium tropici UMR1899. Can J Microbiol 40:198–207

    CAS  Google Scholar 

  • Hardarson G (1993) Methods for enhancing symbiotic nitrogen fixation. Plant Soil 152:1–17

    Google Scholar 

  • Heuer H, Wieland G, Schönfeld J, Schönwälder A, Gomes NCM, Smalla K (2001) Bacterial community profiling using DGGE or TGGE analysis. In: Rochele P (ed) Environmental molecular microbiology: protocols and applications. Horizon Scientific, Wymondham, pp 177–190

  • Hungria M, Araujo RS (1995) Relato da VI reunião de laboratórios para recomendação de estirpes de Rhizobium e Bradyrhizobium. In: Hungria M, Balota EL, Colozzi-Filho A, Andrade DS (eds) Microbiologia do solo: desafios para o século XXI. IAPAR/EMBRAPA-CNPSo, Londrina, pp 476–489

  • Hungria M, Neves MCP (1987) Cultivar and Rhizobium strain effects on nitrogen fixation and transport in Phaseolus vulgaris L. Plant Soil 103:111–121

    CAS  Google Scholar 

  • Hungria M, Vargas MAT (2000) Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crops Res 65:151–164

    Article  Google Scholar 

  • Hungria M, Franco AA, Sprent JI (1993) New sources of high-temperature tolerant rhizobia for Phaseolus vulgaris L. Plant Soil 149:95–102

    CAS  Google Scholar 

  • Hungria M, Vargas MAT, Araujo RS (1997) Fixação biológica do nitrogênio em feijoeiro. In: Vargas MAT, Hungria M (eds) Biologia dos solos dos cerrados. EMBRAPA-CPAC, Planaltina, pp 189–295

  • Hungria M, Andrade DS, Chueire LMO, Probanza A, Guttierrez-Mañero FJ, Megías M (2000) Isolation and characterization of new efficient and competitive bean (Phaseolus vulgaris L.) rhizobia from Brazil. Soil Biol Biochem 32:1515–1528

    Article  Google Scholar 

  • Kozdrój J, van Elsas JD (2001) Structural diversity of microbial communities in arable soils of a heavily industrialised area determined by PCR-DGGE fingerprinting and FAME profiling. Appl Soil Ecol 17:31–42

    Article  Google Scholar 

  • Martínez-Romero E, Rosenblueth M (1990) Increased bean (Phaseolus vulgaris L.) nodulation competitiveness of genetically modified Rhizobium strains. Appl Environ Microbiol 56:2384–2388

    Google Scholar 

  • Martínez-Romero E, Segovia E, Mercante FM, Franco AA, Graham PH, Pardo MA (1991) Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int J Syst Bacteriol 41:417–426

    CAS  PubMed  Google Scholar 

  • Mendes IC, Suhet AR, Peres JRR, Vargas MAT (1994) Eficiência fixadora de estirpes de rizóbio em duas cultivares de feijoeiro. R Bras Ci Sol 18:1–5

    Google Scholar 

  • Michiels J, Verreth C, Vanderleyden J (1994) Effects of temperature stress on bean-nodulating Rhizobium strains. Appl Environ Microbiol 60:1206–1212

    Google Scholar 

  • Mostasso L, Mostasso FL, Vargas MAT, Hungria M (2002) Selection of bean (Phaseolus vulgaris) rhizobial strains for the Brazilian Cerrados. Field Crops Res 73:121–132

    Article  Google Scholar 

  • Müller AK, Westergaard K, Christensen S, Sørensen SJ (2002) The diversity and function of soil microbial communities exposed to different disturbances. Microb Ecol 44:49–58

    Article  PubMed  Google Scholar 

  • Oliveira LA, Graham PH (1990) Speed of nodulation and competitive ability among strains of Rhizobium leguminosarum bv. phaseoli. Arch Microbiol 153:311–315

    Google Scholar 

  • Pereira PAA, Araujo RS, Rocha REM, Steinmetz S (1984) Capacidade dos genótipos de feijoeiro de fixar N2 atmosférico. Pesq Agropec Bras 19:811–815

    Google Scholar 

  • Peres JRR, Suhet AR, Mendes IC, Vargas MAT (1994) Efeito da inoculação com rizóbio e da adubação nitrogenada em sete cultivares de feijão em solos de Cerrados. Rev Bras Ci Sol 18:1–6

    Google Scholar 

  • Ramos MLG, Boddey RM (1987) Yield and nodulation of Phaseolus vulgaris and the competitivity of an introduced Rhizobium strain: effects of lime, mulch and repeated cropping Soil Biol Biochem 19:171–177

    Google Scholar 

  • SAS Institute (1999) Proprietary of software, version 6, 4th. edn. SAS Institute, Cary, N.C.

  • Streit W, Kosch K, Werner D (1992) Nodulation competitiveness of Rhizobium leguminosarum bv. phaseoli and Rhizobium tropici strains measured by glucoronidase (gus) gene fusions. Biol Fertil Soils 14:140–144

    CAS  Google Scholar 

  • Thies JE, Singleton PW, Bohlool BB (1991) Influence of the size of indigenous rhizobial population on establishment and symbiotic performance of introduced rhizobia on field-grown legumes. Appl Environ Microbiol 57:19–28

    Google Scholar 

  • Vargas MAT, Mendes IC, Hungria M (2000) The response of field grown Phaseolus vulgaris to Rhizobium inoculation and nitrogen fertilization in two Cerrado soils. Biol Fertil Soils 32:228–233

    Article  Google Scholar 

  • Vincent JM (1970) Manual for the practical study of root nodule bacteria. Blackwell, Oxford

Download references

Acknowledgements

The research group in Brazil is supported by FINEP/CNPq/MCT (41.96.0884.00 and 520396/96-0) and the rhizobia bean research is supported by EC-INCO (ERBIC18CT980321). M. Hungria acknowledges a research fellowship from CNPq (520396/96-0). The authors thank Ligia Maria O. Chueire, Luciano Souza, Rinaldo B. Conceição, Rubson N. R. Sibaldelli and José Zucca de Moraes for technical help, and Dr. N. Neumaier and Dr. J. F. Toledo for discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariangela Hungria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hungria, M., Campo, R.J. & Mendes, I.C. Benefits of inoculation of the common bean (Phaseolus vulgaris) crop with efficient and competitive Rhizobium tropici strains. Biol Fertil Soils 39, 88–93 (2003). https://doi.org/10.1007/s00374-003-0682-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-003-0682-6

Keywords

Navigation