Skip to main content
Log in

Heart rate at baseline influences the effect of ivabradine on cardiovascular outcomes in chronic heart failure: analysis from the SHIFT study

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

We analysed the effect of ivabradine on outcomes in heart failure (HF) patients on recommended background therapies with heart rates ≥75 bpm and <75 bpm in the SHIFT trial. A cut-off value of ≥75 bpm was chosen by the EMEA for approval for the use of ivabradine in chronic heart failure.

Methods

The SHIFT population was divided by baseline heart rate ≥75 or <75 bpm. The effect of ivabradine was analysed for primary composite endpoint (cardiovascular death or HF hospitalization) and other endpoints.

Results

In the ≥75 bpm group, ivabradine reduced primary endpoint (HR 0.76, 95 % CI 0.68–0.85, P < 0.0001), all-cause mortality (HR 0.83, 95 % CI, 0.72–0.96, P = 0.0109), cardiovascular mortality (HR 0.83, 95 % CI, (0.71–0.97, P = 0.0166), HF death (HR 0.61, 95 % CI, 0.46–0.81, P < 0.0006), and HF hospitalization (HR 0.70, 95 % CI, 0.61–0.80, P < 0.0001). Risk reduction depended on heart rate after 28 days, with the best protection for heart rates <60 bpm or reductions >10 bpm. None of the endpoints was significantly reduced in the <75 bpm group, though there were trends for risk reductions in HF death and hospitalization for heart rate <60 bpm and reductions >10 bpm. Ivabradine was tolerated similarly in both groups.

Conclusion

The effect of ivabradine on outcomes is greater in patients with heart rate ≥75 bpm with heart rates achieved <60 bpm or heart rate reductions >10 bpm predicting best risk reduction. Our findings emphasize the importance of identification of high-risk HF patients by high heart rates and their treatment with heart rate-lowering drugs such as ivabradine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Reil JC, Custodis F, Swedberg K, Komajda M, Borer JS, Ford I, Tavazzi L, Laufs U, Böhm M (2011) Heart rate reduction in cardiovascular disease and therapy. Clin Res Cardiol 100:11–19

    Article  PubMed  Google Scholar 

  2. Kolloch R, Legler UF, Champion A, Cooper-Dehoff RM, Handberg E, Zhou Q, Pepine CJ (2008) Impact of resting heart rate on outcomes in hypertensive patients with coronary artery disease: findings from the INternational VErapamil-SR/trandolapril STudy (INVEST). Eur Heart J 29:1327–1334

    Article  PubMed  Google Scholar 

  3. Custodis F, Schirmer SH, Baumhakel M, Heusch G, Böhm M, Laufs U (2010) Vascular pathophysiology in response to increased heart rate. J Am Coll Cardiol 56:1973–1983

    Article  PubMed  Google Scholar 

  4. Diaz A, Bourassa MG, Guertin MC, Tardif JC (2005) Long-term prognostic value of resting heart rate in patients with suspected or proven coronary artery disease. Eur Heart J 26:967–974

    Article  PubMed  Google Scholar 

  5. Böhm M, Swedberg K, Komajda M, Borer JS, Ford I, Dubost-Brama A, Lerebours G, Tavazzi L (2010) Heart rate as a risk factor in chronic heart failure (SHIFT): the association between heart rate and outcomes in a randomised placebo-controlled trial. Lancet 376:886–894

    Article  PubMed  Google Scholar 

  6. Swedberg K, Komajda M, Böhm M, Borer J, Ford I, Dubost-Brama A, Lerebours G, Tavazzi L (2010) Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled trial. Lancet 376:875–885

    Article  PubMed  CAS  Google Scholar 

  7. Cleland JG, Swedberg K, Follath F, Komajda M, Cohen-Solal A, Aguilar JC, Dietz R, Gavazzi A, Hobbs R, Korewicki J, Madeira HC, Moiseyev VS, Preda I, Van Gilst WH, Widimsky J, Freemantle N, Eastaugh J, Mason J (2003) The EuroHeart Failure survey programme–—a survey on the quality of care among patients with heart failure in Europe. Part 1: patient characteristics and diagnosis. Eur Heart J 24:442–463

    Article  PubMed  CAS  Google Scholar 

  8. Swedberg K, Komajda M, Böhm M, Borer JS, Ford I, Tavazzi L (2010) Rationale and design of a randomized, double-blind, placebo-controlled outcome trial of ivabradine in chronic heart failure: the systolic heart failure treatment with the I(f)Inhibitor Ivabradine Trial (SHIFT). Eur J Heart Fail 12:75–81

    Article  PubMed  CAS  Google Scholar 

  9. Bucchi A, Baruscotti M, DiFrancesco D (2002) Current-dependent block of rabbit sino-atrial node I(f) channels by ivabradine. J Gen Physiol 120:1–13

    Article  PubMed  CAS  Google Scholar 

  10. Hasenfuss G, Holubarsch C, Hermann HP, Astheimer K, Pieske B, Just H (1994) Influence of the force-frequency relationship on haemodynamics and left ventricular function in patients with non-failing hearts and in patients with dilated cardiomyopathy. Eur Heart J 15:164–170

    Article  PubMed  CAS  Google Scholar 

  11. Reil JC, Reil GH, Böhm M (2009) Heart rate reduction by I(f)-channel inhibition and its potential role in heart failure with reduced and preserved ejection fraction. Trends Cardiovasc Med 19:152–157

    Article  PubMed  CAS  Google Scholar 

  12. Conway MA, Allis J, Ouwerkerk R, Niioka T, Rajagopalan B, Radda GK (1991) Detection of low phosphocreatine to ATP ratio in failing hypertrophied human myocardium by 31P magnetic resonance spectroscopy. Lancet 338:973–976

    Article  PubMed  CAS  Google Scholar 

  13. Custodis F, Baumhakel M, Schlimmer N, List F, Gensch C, Böhm M, Laufs U (2008) Heart rate reduction by ivabradine reduces oxidative stress, improves endothelial function, and prevents atherosclerosis in apolipoprotein E-deficient mice. Circulation 117:2377–2387

    Article  PubMed  CAS  Google Scholar 

  14. Colin P, Ghaleh B, Monnet X, Hittinger L, Berdeaux A (2004) Effect of graded heart rate reduction with ivabradine on myocardial oxygen consumption and diastolic time in exercising dogs. J Pharmacol Exp Ther 308:236–240

    Article  PubMed  CAS  Google Scholar 

  15. Tardif JC, O‘Meara E, Komajda M, Böhm M, Borer JS, Ford I, Tavazzi L, Swedberg K (2011) Effects of selective heart rate reduction with ivabradine on left ventricular remodelling and function: results from the SHIFT echocardiography substudy. Eur Heart J 32:2507–2515

    Article  PubMed  CAS  Google Scholar 

  16. Ceconi C, Comini L, Suffredini S, Stillitano F, Bouly M, Cerbai E, Mugelli A, Ferrari R (2011) Heart rate reduction with ivabradine prevents the global phenotype of left ventricular remodeling. Am J Physiol Heart Circ Physiol 300:H366–H373

    Article  PubMed  CAS  Google Scholar 

  17. Mulder P, Barbier S, Chagraoui A, Richard V, Henry JP, Lallemand F, Renet S, Lerebours G, Mahlberg-Gaudin F, Thuillez C (2004) Long-term heart rate reduction induced by the selective I(f) current inhibitor ivabradine improves left ventricular function and intrinsic myocardial structure in congestive heart failure. Circulation 109:1674–1679

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

MB and JCR were supported by the Ministry of Science of the federal state of the Saarland, Germany, and the Deutsche Forschungsgemeinschaft (KFO 196).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael Böhm or Jan-Christian Reil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böhm, M., Borer, J., Ford, I. et al. Heart rate at baseline influences the effect of ivabradine on cardiovascular outcomes in chronic heart failure: analysis from the SHIFT study. Clin Res Cardiol 102, 11–22 (2013). https://doi.org/10.1007/s00392-012-0467-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-012-0467-8

Keywords

Navigation